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Using the superspace formulation of the N = 1 spinning string, we obtain a path integral 
measure which is free from world-sheet general-coordinate as well as Q-supersymmetry 
anomalies. Using this measure the conformal anomaly is explicitly calculated by extending 
Fujikawa’s method to superspace. A complete solution of the 2-dimensional supergravity con- 
straints is given. ‘(‘1 1986 Academic Press, Inc. 

1. INTRODUCTION 

Fujikawa [ 1 ] has emphasized the importance of the functional measure for the 
understanding of anomalies: Different choices of the measure lead to different 
anomalies. For example, in Yang-Mills theories the requirement of gauge 
invariance determines a measure for the fermions that gives the correct chiral 
anomaly. Similarly, for systems coupled to gravity, coordinate invariance deter- 
mines a measure that gives the correct trace anomaly. For a scalar field 4 one finds 
that the correct measure, in any dimension d, is D(g’j4d) (where g is the deter- 
minant of the metric), whereas for a covariant vector field A, with curved index the 
measure is D( gJp 2’4dA ,,,). If the measure cannot be chosen to be invariant under all 
symmetries of the action, one has anomalies in each of the violated symmetries. 
One computes the anomaly by carefully defining (i. e., regulating) and evaluating 
the Jacobian determinant of the transformation. The measures above are found by 
requiring “naive invariance,” i. e., that the unregulated Jacobian for general coor- 
dinate transformations be a total derivative. 

When the gravitational field itself is quantized, the natural symmetry one would 
like to impose on the measure is BRST invariance, which is the residual rigid sym- 
metry that remains at the quantum level after the local classical invariance has been 
fixed and coordinate ghosts have been introduced. Since the coordinate ghosts and 
antighosts serve the purpose of removing the unphysical degrees of freedom of the 
graviton at the quantum level, their measure should be treated simultaneously with 
that of the graviton. Moreover, since antighosts never have an antighost field in 
their BRST transformation rule, their contribution to the linear term in the 
Jacobian vanishes identically. Requiring that the product of the measures of the 
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graviton and the ghost be BRST invariant, one should be able to deduce the correct 
choice of integration variables. However, technical problems in this approach 
[ 1, 21 lead to a modified prescription in which one treats the vielbein emu and the 
ghost C” as covariant and contravariant vectors, respectively, and requires their 
measure to be invariant under general coordinate transformations. This prescrip- 
tion is known to yield correct results in all examples [ 1, 2). 

In this article we extend these ideas to superspace. We find the supercoordinate 
invariant measure for scalar superfields 4 is D(#E- 1’2) where E = sdet EAM is the 
superdeterminant of the inverse vielbein. To determine the measure for the vielbein 
and ghost superfields, we follow the prescription above and require invariance 
under supercoordinate transformations for contravariant supervectors. This 
procedure leads to two surprising results: the measures for the vector and spinor 
components of the supervectors have different powers of E, and these powers are 
rrot uniquely determined by supercoordinate invariance. We fix the measure by 
assunzirzg that for the superghosts with flat indices the measure is the same as that 
for scalars, and then transforming to curved indices [ 121. Having found the correct 
measure, we rederive the critical dimension of the N = 1 spinning string. (Using dif- 
ferent methods, Martinet [3] gave the first superspace derivation of the critical 
dimension). This concludes the body of the paper. 

Several related issues are discussed in the appendices. In Appendix A we present 
our notation and conventions, and review D = 2 superspace. In Appendix B, we 
describe D = 2 superspace supergravity and give a complete solution of the Bianchi 
identities and the constraints in an arbitrary gauge; solutions in restricted gauges 
have been given in [4, 51. We also derive some of the results of Sections 224 in 
spinor notation. In Appendix C we identify the supervielbein components with I- 
space fields using a nontrivial extension of the gauge completion method [6]. 
Finally, in Appendix D we derive a lemma for the evaluation of regulated super 
traces. 

2. THE SUPERSPACE QUANTUM ACTION OF THE SPINNING STRING 

In superspace the dynamics of a spinning string can be described by matter 
superlields X’(x, 19) (i = l,..., d) coupled to the 2-dimensional supergravity 
multiplet E,“(~~, ~9) [5]. However, the 16 components of EAM contain too many x- 
space fields, and these are eliminated by imposing constraints. Following [3], we 
choose the following set of constraints on the torsion tensor T,,BC (the notation is 
summarized in Appendix A). 

T,,” = 2i(y”),, (2.1) 

T y=O GJ (2.2) 

Tllh( = 0. (2.3) 
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The Bianchi identity 

implies a further constraint 

Tah(’ = 0. (2.4) 

In Appendix B a complete solution of these constraints in terms of unconstrained 
superfields as well as a solution of the Bianchi identities is given. For the purposes 
of the present paper we do not need this explicit solution. Instead we reproduce 
here the argument given by Martinet [3]. Just as in four dimensions, (2.3) can be 
used to express the bosonic connection 4, in terms of the vielbein, while (2.1), (2.2), 
and (2.4) determine the bosonic vielbein E, M in terms of the fermionic vielbein EgM. 
The constraint (2.2) not only expresses the fermionic connection 4, in terms of the 
vielbein, it also provides two more constraints on the fermionic vielbein EaM. 
Therefore we have only six independent components of ExM left. If one fixes the 
gauge for the 4 supercoordinate transformations and the 1 local Lorentz transfor- 
mation, one is left with only one superfield degree of freedom, the conformal fac- 
tor I,+. This corresponds to the x-space conformal gauge, where one has only the 
trace of the graviton, the y trace of the gravitino, and a single auxiliary field left. By 
direct computation, or as explained in Appendix B, one can check that the con- 
straints (2.1)-(2.4) are satisfied by 

E, = etiDa, E, = e2*au + ie’@ya8’(D,ll/) D,. (2.5) 

(We have not distinguished flat and curved indices on the rigid superspace 
derivatives, i. e., DA = hAMD,. See Appendix A for further details of notation). 
Locally, any vielbein can be obtained by applying a gauge (Lorentz + 
supercoordinate) transformation to (2.5). 

In Polyakov’s approach to string theory [7], one treats the vielbein EAM as a 
dynamical variable and integrates over it in the path integral. One therefore fixes 
the gauge to factorize out the volume of the gauge transformations. We make the 
following five gauge choices: 

E,“=O 

E,‘=E,*=e$ 
(2.6) 

(1 and 2 are fermionic indices and are called + and - in Appendix B) to fix the 4 
supercoordinate transformations and the 1 local Lorentz transformation. Given 
these gauge choices, the torsion constraints imply that the vielbein is of the confor- 
ma1 form (2.5). To see this, we have to show that E,* = E,’ = 0, since the fermionic 
vielbein is then completely specified (see also Appendix B). The bosonic vielbein is 
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then of the form in (2.5) since the bosonic vielbein is solved in terms of fermionic 
vielbein through the torsion constraints. To see that E,* = E,’ = 0, let us consider 

iv,, V,) = T,,%+ Rx,M 

= 2i(y”),,V,. + R,, M. (2.7 

Since (Y”),~ is diagonal (see Appendix A), we have 

(V,, Vz} = R,,M. (2.8) 

In the gauge of (2.6), we have 

V, = e$D, + E,*D, + #1 M 

Vz=etiD,+E2’D,+$,M. (2.9) 

On the left-hand side of (2.8), we collect terms involving space-time derivatives: 

eeE2’{D,, 0,) +e’E,*{D,, D2} 

= -2ie~EE?‘(a,+a,)-2ie~E,‘(d,-a,). (2.10) 

Since the right-hand side of (2.8) does not contain any terms with space time 
derivatives, we conclude that 

Ez’ = E,‘=O. (2.11) 

This shows that in the gauge (2.6) the vielbein is of the conformal form (2.5). 
In the following we work in the unweighted gauge of (2.6), i. e., we insert explicit 

h-functions in the path integral. The next step is to construct the Faddev-Popov 
ghost action. To do this we have to consider the gauge variations of (2.6). In 
general, we define 

6V,, =SE,“Db,+fid.4M= [EAMD,,,,+&M, KNDN+ A.M] (2.12) 

where KN and n are the gauge parameters for the supercoordinate transformations 
and the local Lorentz transformations, respectively. For later use, we will split the 
gauge fixing term E,” = 0 into its y trace and y traceless parts: 

(y,JpBE8” = 0 

a$“’ = E,” - ;(jq,)xSEgn = 0 (2.13) 

where 7 represents constant Dirac matrices regardless of its indices. 
The variations of these gauge fixing terms are then given by 

6(y,ppE,“) = eti~,p’BDBK”’ + 4ietiKp 

6(ks”‘) = $eti(jj,y”),p D, K” 

6(E,‘- E?*)=e+(D, K’-D,K*)+e$A. (2.14) 
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The Fadeev-Popov ghost action is then obtained by replacing the gauge 
parameters by the corresponding ghosts and multiplying the variations with their 
associated antighosts: 

Y ghost = $C,“eti(jJ,*j”),CI D, C” 

+ cpeti(y,,,@aD, C” + 4iC”) 

+ ce@( D, C’ - D, C2 + C). (2.15) 

The antighost cm formally has 4 components; however, 2 of them, the y-trace part, 
drop from the action (2.15) due to the 2-dimensional identity y,yny” =O. In light 
cone coordinates (see Appendix B) one can define an antighost which has only the 
relevant two components, but for our later calculations we find it easier to keep the 
ghost action in this form and remove the redundency later. 

3. THE FUNCTIONAL MEASURE IN SUPERSPACE 

Having determined the quantum action in the last section, we now turn to the 
problem of identifying the proper functional measure in the path integral. Choosing 
different functional measures will in general lead to different kinds of anomalies 
[l]. In the bosonic string, one fixes the functional measure by requiring that no 
world-sheet reparametrization anomaly be present. Here, in the superspace 
approach to the spinning string, we should choose a new functional measure that is 
invariant under supercoordinate transformations; this guarantees the absence of the 
Q-supersymmetry anomalies as well. The method we are going to use is very similar 
to the bosonic case; however, we find the surprising result that in d= 2 the 
invariance under supercoordinate transformations does not fix the functional 
measure for a supervector field uniquely. Before discussing this problem, let us first 
look at the proper measure for a scalar superlield S. Under supercoordinate trans- 
formations a scalar super-field transforms as 

6S= [S, K”Dn,] = - K”D,S. (3.1 1 

We assume that the proper integration variable is s= SE”, where E = sdet EAM. 
(Note that in the literature, usage varies and E is often defined as sdet EMA.) The 
transformation law of E,*’ is defined by 

GEAMD, = [EAMDM, KND,] (3.2) 

(cf. 2.12). Therefore 

6EAM = EANDNKM - KNDNEAn” - 2iE,pK”y~v6,M 

and 

6E=E(D,K”-EMAKNDNE,qM)(-)M 

(3.3) 

(3.4) 
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Note that the last term in (3.3), coming from the anticommutator {D,, DB), 
cancels in (3.4). Hence we obtain the following transformation of 3: 

Ss= -K”D,,s+kzD,KM(-)M. (3.5) 

The Jacobian of this transformation is exp str(&@/T/a& where the supertrace can be 
defined by using a complete orthonormal set of superiields 4’ for 3 as follows: 

str~=~~d’xd%q5’[-K”DM+k(DMKM)(-)’I#. 
I 

By partially integrating the second term in (3.6), we obtain, up to a total derivative: 

str z = c s d’x d28 @( - 1 - 2k) K”~,@. (3.7) 

The condition for a unit Jacobian is therefore 

k=-+ or s= S(sdet E,“))1’2. (3.8) 

Recall that in the ?c-space case one has 

so the only difference is that the vielbein is replaced by the supervielbein. Since 
under BRST transformations the antighost always transforms into the auxiliary 
field, its Jacobian trivially equals unity, just as in x space. However, subtle differen- 
ces arise when one looks at the functional measure of the vielbein and the ghosts. 
The issue is even rather obscure in .Y space. In principle, the functional measure 
should follow from the requirement that the Jacobian of the BRST transformation 
be unity. In x space, the measure of the ghost and vielbein has been derived by 
letting these fields transform under BRST transformations as contravariant vectors. 
This procedure has not yet been justified, although whenever it as been used to 
compute anomalies it has given the correct results. Therefore we adopt this 
procedure in superspace. In ordinary space-time, the functional measure of the 
general coordinate ghost C”’ is given by 

(3.9) 

where d is the dimension of space-time) and the measure of the supersymmetry 
ghost C” is the same as that of a scalar. Two questions immediately arise: What is 
the equivalent of d in superspace and will the functional measure be the same for 
C” and c” in superspace? To answer these questions, let us follow the rule stated 
above and investigate the functional measure of a supercontravariant vector V”. 
Under supercoordinate transformations we have 

6VM = VNDNKM - KND, VM - 2iVp~‘y~,,6,M. (3.10) 
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Let us first assume t”” = Ek V”. The Jacobian is 

asP c%P” (-)M. J=expstr aBN =exp aVM (3.11) 

The last term in (3.10) does not contribute to the supertrace so that we drop it in 
the following discussion. We then have 

sP”= BN~NKM-KN~NP+kP(~N~N)(-)N. (3.12) 

In d= 2, the number of bosonic and (Majorana) fermionic components are both 
equal to two, so in the supertrace (Xit”/a8”)( - )““, the last two terms of (3.12) 
always cancel separately, leaving only a non-vanishing contribution from the first 
term. In this case the Jacobian would never be unity. The only way out is to take k 
different for v” and VP. Denoting these numbers by k, and k,, respectively, we 
obtain ( vm E V”‘Ekm, VP = VpEkp), 

+ Zk,(a,Km - D, Kp)] 4’ (3.13) 

d2x d20 #[(D, K”) - 2K”‘a, - 2KpD, 

+2k,(d,K”-D,Kp)] @. (3.14) 

The factors of 2 are due to the spinor or vector traces. Requiring that 
(as v”/a P”)( - )M = 86 v-/a p - 8s vtil/a v/’ be a total derivative gives 

k,-k,= -4. (3.15) 

So we see that in d= 2, the condition of a unit Jacobian does not fix k, and 
k, uniquely. We assume that the measure for ghosts with flat indices is the same 
as that for scalars. Hence c” = CAeP $. Transforming to curved indices we find 
p=Cme-3+ and ~~=CP~-“+ [ 121. Hence, 

km= -; and k,= -1. (3.16) 

These values satisfy (3.15). We thus obtain the following weights for the vielbein 
and ghosts 
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where we have used that E = e2* from (2.5). The ghost weights are again those of a 
contravariant vector. At this point we see that the should actually have used 

p=o and ~,‘-~,LO (3.18) 

as gauge fixing terms instead of (2.6). Taking this fact into account and expressing 
each field in terms of twiddled ones, we obtain the partition function for the spin- 
ning string: 

where 

’ (3.19) 

4. THE CONFORMAL ANOMALY 

In this section, we obtain the effective action of the conformal factor rc/ after 
integrating over F, the ghosts, and the antighosts. We notice that after the rescal- 
ing 

all these fields become decoupled from the conformal factor II/, so the integrations 
just yield a $-independent constant. However, there will be non-trivial Jacobian 
factors coming from the change of integration variables (4.1) which have to be 
regularized carefully. The finite change of variables in (4.1) can be reached by per- 
forming a series of infinitesimal resealings with scale parameter 61, and finally 

595117212-E 



356 ROtEK, VAN NIEUWENHUIZEN, AND ZHANG 

integrating over t from t = 0 to t = 1. In the intermediate stage, the $ factor appear- 
ing in the action (3.19) is of the form 

$,=(I-t)IC/. (4.2) 

The Jacobian of the infinitesimal resealing of each field is 

J= exp Tr(q. I,+ &) (4.3) 

where q is the product of the number components, statistics, and the weight of the 
resealing as given in (4.1). (By including the statistics in q, we replace a supertrace 
by a trace.) 

The trace has to be regularized for each field by the quadratic part of its action. 
Let us first discuss Bi. The kinetic operator of gi given by (3.19) is Qr = etiL’D”D,e*f. 
Since Q,+ = Q, there exists a complete set of orthonormal superfields 

et+;= A(t) ii. (4.4) 

The trace in (4.3) can then be regularized by 

Trq$St=$i_m_ ~[d2xd20#qt+b6texp 
I 

= lim 11 d2x d% diqt,b bt exp 
M-m i (4.5) 

Since a (super)trace is invariant under a change of basis, we may replace the 4j in 
(4.5) by the superspace generalization of plane waves 

eikr + Bryn = ,iZ h’ - (4.6) 

The completeness relation 

I 
d2k ~d2Xei%.Xe~i%.K=s2(x-x~)s2(e-e’) 

can easily be verified. We therefore obtain 

Tr q+ 6t = ,“_“r j d2x d29 (q . *fit) ! $$ d’x 

(4.7) 

To make the integral well defined, we follow the usual procedure of analytically 
continuing from Minkowski to Euclidean space-time. Evaluating the square in 
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(4.7), we find a form such that a general lemma proven in Appendix D can be 
applied. Using this result and noting that q = -d for pi, we obtain 

[‘Trqj,dr=-$-i{~dt~d2xd20$D21/1, 
0 

=$ -is d’xd% (D”$)(D,$). (4.8) 

Let us now turn to the ghost resealings. As a consequence of splitting the gauge 
fixing term Ez = 0 into its y trace and y-traceless parts, our ghost action (3.19) is of 
triangular form. Therefore, in computations involving closed ghost loops the off- 
diagonal terms never contribute. We notice furthermore, that the C?’ and C ghosts 
are nonpropagating, so closed loops involving these ghosts will not contribute to 
the anomaly either. Therefore, the only ghost term we have to consider is 

(4.9 1 

The problem here is that the kinetic operator e. ‘“(y,y”),” Dge3” is not her- 
mitian. The solution to this problem is well known [ 1, 81. In general, if the ghost 
action is of the form COC, where 0 is not a hermitian operator, we can consider 
the hermitian actions COtOC and COO+c, and take OtO and OOt as hermitian 
operators to regularize the trace of the ghost and antighosts, respectively. In our 
case, we have for the ghost 

The operator 

(4.10) 

Q,,,(t) = e3~1Dle~41LID,~e31/l,(y,nr,)“” (4.11) 

is now hermitian and we can therefore use it to regularize the trace of the cm ghost 
in the same way as we did for 81: 

where the “tr” denotgs trace in (mn) space, i. e., a summation over m = n. 
For the antighost CL we have first to fix the gauge, since as mentioned Section 2, 

(4.9) has a local gauge invariance under 

se,,z = jy’g” (4.13) 

where xB is a arbitrary Majorana spinor. We use these two degrees of gauge 
freedom to impose two conditions on the antighosts. 
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Since this is an algebraic gauge, there are no “ghosts for ghosts.” So we obtain the 
antighost action from (3.19) 

(4.15) 

where we have used the identity 

The operator 

(7/&9 (7”)ns = -%2&&s + (YsMl)s)as. (4.16) 

- 
Q,,(t) = e-2~rD~e6~1Dpe~2*‘(y,y,y,)aB 

will then be used in the regulator 

(4.17) 

(4.18) 

Working out Q,(t) Qpn(t) and &,(t) QP”(t) in (4.12) and (4.18) respectively one 
easily sees that they are the same in structure and differ only in e-@! factors. 
Decomposing them into a sum of terms proportional 6,” and s,,,” respectively, we 
see that the E,” terms do not contribute. Hence the operator in (4.18) again reduces 
to a form suitable for the lemma in Appendix D. Taking into account that q = 6 for 
the ghost and q = 4 for the antighost, we obtain 

for the ghost and 

j’ Tr qt,b 6t = G j’ dt j d2x d28 $D’t+b, 
0 0 

=; j d2x d*tl (D*tj)(D,+) (4.20) 

for the antighosts. 
Summing over the contributions from R’, the ghost, and the antighost, we obtain 

I 
1 

0 
Trqt+bJt=$-ij’dtjd2xd28qD2$, 

0 

= --& j d2x d’tl (D”$)(D,$) (4.19) 

d- 10 
- -i d2x d*O (D”l(/)(Da$) 

871 5 

in agreement with the previous results [7, 33. 

(4.21) 
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5. CONCLUSION 

In a previous computation [2] of critical dimensions of spinning strings, a 
measure was used which was invariant under BRST-general coordinate transfor- 
mations. For supersymmetric systems, it is natural to require that the measure also 
be invariant under BRST-local supersymmetry transformations. In principle, this 
problem could have been tackled directly in x space, but due to the many 
ambiguities, we instead solved this problem in superspace. We found the curious 
result that BRST-supercoordinate invariance did not completely fix the measure of 
the supercoordinate ghosts. This may indicate that the quantum action has a 
further symmetry such that by also requiring that this symmetry is free from 
anomalies, the measure would get completely fixed. We fixed the measure by requir- 
ing that ghosts with flat superindices have the same measure as scalars, and further 
that the measure of the vielbeins be the same as that of the ghosts with curved 
indices [12]. With this measure we then computed the critical dimension of the 
spinning string, and found the correct results d = 10. 

Our results now allow one to determine the supersymmetric measure in x space. 
In [23, it was shown that at each point in x space, the sum of the Jacobians for 
local supersymmetry variations of the various fields did cancel. This, however, is 
not sufficient, as is clear from the fact that one would not obtain the fermionic 
terms in the supersymmetric extension of the Liouville action. Rather, one should 
regularize the Jacobian for each field, and sum these regularized Jacobians. 

APPENDIX A: NOTATION AND CONVENTIONS 

Our metric is qub = ( - + ) for a = 0, 1. Spinorial indices are raised or lowered by 
E ap = EZP ,E - 1, according to 12 - 

f = E”‘Q, Xz = X’Epa. 

Majorana spinors are defined by 

We use a real representation for the y matrices 
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In curved superspace, we use 7 to denote these constant y matrices regardless of the 
indices on jJ. The rigid covariant spinor derivatives of flat superspace satisfy 

{D,, D,> =Wp,, D, = a, + i(?/“)p,,8’d, 

D’ = Dfl’D P 

D2D, = - D, D2 = 2iyTv D9, 

(D2)2 = -40. 

Note that D2 is purely antihermitian, whereas D, is hermitian. To see this, note 
that from {a,, P} =c?; and [a,, x”] = 8; it follows that (a,)+ = ap and 
(a,)+= -a,. We use A = (a, a) to denote tangent superspace indices and 
M= (m, p) to denote curved superspace indices. 

Vielbeins are defined by 

E, = EAMDM 

where D, are the covariant derivative of flat superspace 

D, = (a,, D,,) 

and covariant derivatives of curved superspace are defined by 

where 

is the Lorentz generator. Note that the vielbein E,JM is not exactly equal to the 
vielbein VA”” used in the earlier literature of supergravity; rather, VAM is expanded 
on a holonomic basis by E, = VAMa,,,, which implies EAM = VANgNBaBM where 
8,” is the vielbein of flat superspace. 

We further define torsion and curvature tensor by 

[VA, V,} = TAe“Vc+ RABM. 

Grassmanian integration is defined by 

d29 = id9’ d02 = q c”p dd, d0, = i dt?” de, ; 

where d2B is real, and S’(0) = iB’02. 
Because the 2-dimensional Lorentz group is SO( 1, I), which has only I-dimen- 

sional representations, it is very convenient to work in a basis of helicity eigenstates. 
Then a spinor index p takes two values (+, -), which represent the helicity +f 
components, 1 ‘(y5x)+ = i-+x+, and a vector index II? takes the values (+ +, - - ), 
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which represent the helicity + 1 components and are equivalent to light cone com- 
ponents: (umy,)++ = fu,,. The anticommutation relations of the flat superspace 
derivatives are then simply 

(DJ= +ia,., {D+,D-}=O 
and the Lorentz generator M,’ acts on spinors and vectors as 

IIM,;(l= +4x+ CM ?‘,+I= fV++. 

For purposes of comparison with other work, e. g., [lo], which work in 
Euclidean space rather than Minkowski space as here, we note that after analytic 
continuation, 6+ + e, 8 - --f f7, ia + + + a,, -id _ ~ + a,. 

APPENDIX B: D = 2 SUPERGRAVITY IN SUPERSPACE 

In this appendix we describe aspects of 2-dimensional supergravity. The covariant 
derivatives V, s E, + #AM, E, = EAMDM, D, = (a,, Dp) are defined in Appen- 
dix A. Their transformation is defined by 

with 

which implies 

dv, = [V,, Kl (B.1) 

K=K”D,+AM U3.2) 

6EAN = - K”D,EAN - AMABEBN + E,“DMKN - 2iEapKVj$,,G,N. (B.3) 

The last term comes from the torsion of flat superspace. In particular we have 

6E+‘= -(K”D,E+’ +$AEk’)+EkMDMKk 

sE+“=-(K”D,E,“+tAE,“)+E,MDMK”f2iE~’K’ 

6E, ‘+=-(K”DME,‘~+tAE~“)+E~MD,K~‘+_2iE+’K’. (B.4) 

In flat superspace, EAM = dAM, and hence we can choose five nonsingular gauges. 
Three are algebraic: 

(a) Using the Lorentz transformation (A) 

E+ f=.l_- 

(b) Using spinor translations (K’) 

E,“=O. 

(B.5) 

u3.6) 
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Furthermore, there are two gauge choices with spinor derivatives E, of the vector - 
translation parameters K1 *(E, KT T): 

E, ’ ++=o (B.7) 

We now consider the torsion constraints of D = 2, N = 1 supergravity. The tor- 
sions and curvatures were defined in Appendix A: 

F,., , V,} = T,d%- + R/,&f. 03.8) 

They satisfy Bianchi identities that follow from the graded Jacobi identities: 

CCv[AJBJJC)~=o. (B.9) 

We choose the following constraints: 

(V+)2= +iVkkoTkkA= &2idikA, R,, =0 (B.lO) 

{V+,Vp}=RMoT+pA=O. (B.ll) 

We show below that these are conventional. The constraint (B.lO) includes a con- 
straint on a curvature (R, + = 0) as well as on torsions; as is well known [ 111, 
superspace constraints can always be expressed in terms of torsions only, but the 
form (B.lO)-(B. 11) is particularly convenient for expressing all torsions and cur- 
vatures in terms of a single irreducible set. This procedure, called “solving the 
Bianchi identities,” is most easily carried out by working directly with the com- 
mutator algebra of the covariant derivatives, as the Bianchi identities are highly 
redundant. Thus we need to determine [V, , V, + 1, [V, , VT + 3, and - 
rv ++,V_-1. We begin with 

CV+,V.,l=fiCV,,V,21=O~T+,_++A=R~,++=0. (B.12) 

Next, we consider 

[V,,V,,l= +U,,VT21= fi[(V,,VF),V+l 
= fi[RM,Vr]= +i(T$RVr-(VFR)M) 

=-iRVFfi(V,R)M 

oT A- 
+, ii - -; RhTA, R,, fT = TiVf R. (B.13) 

Finally, we have 

cv ++,V--I= -i[V+‘,V-_I= -i{V+, [V+,Vpp]} 

-iRV_--i(V_R)M 
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= --I . -f(V+R)V--;R’M-i(V,VR)M-i(VR)V+ 
[ 1 

= -t[(V+R)V-+(VR)V+]-(V+VR+tR2)M 

OT ++.-- A= -$(G-AV+R+G+AV_R), 

R ++, __ = -(V+VR+fR’). (B.14) 

This determines all torsions and curvatures in terms of the single superlield R (note 
that R is pure imaginary). When this superlield vanishes, the superspace geometry 
is entirely flat. We see that the constraints (B.10))(B.11 ) imply the (redundant set 
of) purely torsion constraints: 

T I+ A=-+2i6++A, T+_A=T++,p-“=O - (B.15) 

T +. ** A= T,, FiU=O. (B.16) 

In fact, (B.15), which are (2.1))(2.3) in spinor notation, are sufficient to imply 
(B.lO)-(B.11) and hence (B.12)-(B.14) and (B.16). 

We now show that the constrain_ts (B.lO)-(B.11) are conventional, that is, given 
an arbitrary covariant derivative V, (equivalently, given arbitrary E,“” and $,), 
which define arbitrary unconstrained torsions F and curvatures R”, we can always 
find a derivative VA (equivalently, we can find EAM and 4A expressed in terms of 
E,” and F,) that satisfy (B.lO)-(B.11) and hence (B.12)-(B.14). The full nonlinear 
computation is messy and unilluminating, so we will only consider VA that deviate 
infinitesimally from VA, and torsions and curvatures that deviate infinitesimally 
from (B.lO)-(B.11): 

(v1)2= f& +$(&+A)~,++%,kM 

(~+,~_)=(6T+_A)~A+i?M. 

(B.17) 

(B.18) 

A straightforward computation shows that 

Vi=~i+t6A++)~,+t6C,)M -- 

V -?++ Ti[$Q-,,” ++- __ )VA+tt6R..)M+tV.6A,+)V+ 

+f(GC+)V++(R6A~~+(V+6C+))Ml 

satisfy (B.lO)-(B.l 1) to order 6 when 

6A *&= TiGT,-++ 

6C, = 12(6T++‘+V+6Ak+). 

(B.19) 

(B.20) 

We now solve the constraints (B.lO)-(B.11) in terms of unconstrained prepoten- 
tials. Previous solutions have been given only in special coordinate systems [4]. 
Equation (B.lO) V, + = fi(V,)2 clearly determines the vector vielbein E, + and 
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connection f$ k f in terms of the spinor vielbein E, and connection d+. The remain- 
ing relation among these quantities follow from (B.l l), which splits into two 
equations: 

R=E+d-+Epb+-q3+4- (B.21) 

{E+,E-}=&+E--4-E,). (B.22) 

Equation (B.21) determines the superfield R, but (B.22) is a genuine constraint on 
E, and 4+. We solve for these quantities in terms of unconstrained prepotentials 
which we take as the six components of the noncovariant spinor derivatives 

B, =&‘D+ +&mam. (B.23) 

Note that by definition 8, + = 0. From i?, we define noncovariant vector 
derivatives: 

B+, = wJQ* (B.24) 

and anholonomy coefficients CAB’ 

[&, & j = i’,,cEc. (B.25) 

We express E, in terms of 8, ; since the prepotentials are unconstrained, the most 
general E, can always be w&ten as 

E,=E,+F,,&. (B.26) 

We substitute (B.26) into (B.22) and find 

(l+F++F~~)(~+,~.~}+(E+F~_)~+ 

+(E_F++)& +2iF.._B++ -2iF,,.!‘- 

=~~+(~_+F_~~+)-~~-(8++F++~_). (B.27) 

From the coefficients of l?, f we find 

f2iFTT+(1+F++F~~)~+_“=0 (B.28) 

which implies 

F 
i 

“=Tc_.e** ~(l-jl-t;,~++C+-~-)=rfC+~iF+m(C-’) (B.29) 

and determines E, in terms of the prepotentials. For the coefficients of I?+, after 
some algebra, we find 

4& = 52 ;:;++;I; [~+~~+ErF,.-F,~(~+~‘+E,FTf)]. (B.30) 
++ 
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We have thus found V, in terms of the prepotentials, and, from V, + = T i(V+)‘, - 
all of V,. 

In the conformal gauge, E, = 8, and 4 5 = f 2C+ _ +; in particular we see 
explicitly that the gauge condition g‘, = e@D, implies F, + = 0 and hence - 
E, . T’=O 

The formalism developed here can be used to simplify some of the calculations in 
Sections 224. In particular, the gauge conditions (BS-(B.7) imposed on the “twid- 
dled’ variables (cf. (3.18)), are 

E-3’2E + iT =O , E-3’2E 
+ 

+ + = 0 E-‘(E++ -E--)=0. (B.31) 

This form avoids the problem of separating out pieces of E,” as discussed after 
(2.15). From the variations (B.4), using the resealed variables (3.17) and the confor- 
ma1 gauge (B.31) (with E = eZti), we find the ghost Lagrangian (cf. (3.19)). 

Y rhost=FS7ie-2~D_+(e3~~TI) 

+~i~‘e~‘~ [D+(e3ti~**)i2ie2ti~‘] 

+~e~“[-e~~+D+(e2”~;f)-DD(e2”~‘-)] (B.32) 

with summation over all +. The matter lagrangian remains Smatter = 
20, (ells) Dp(e$B’) as in (3.19). We perform the same resealings as in (4.1). The 
discussion for the matter fields proceeds unmodified ((4.2)-(4.8)). However, the 
ghost sector simplifies. For the same reasons as discussed below (4.8), we only need 
to keep one term from (B.32) (cf. 4.9): 

F-- fe-‘“D+ e3”c- ~ + ?, + -e-2$~D e31Lc’ f. (B.33) 

The kinetic operator in (B.33) is not hermitian. As explained below (4.9), we over- 
come this problem by replacing a lagrangian COC with CO+OC+ COO+ C. Then 
(B.33) is replaced by 

?.. pt(ep’tiD+e31/,)(e31Dpe ~‘@) ?‘++- + ?++(e3~Dpe-‘~)(e-‘@D+e3~) c- 

= F ~ +e-2”D e6d’D e- zti? + ++- +~i+te’~D~e-4*D+31L~--. (B.34) 

The operators in (B.34) 

and 
0 e3”D e-4iD e3ti 

(B.34) 
- + 

e3”D + e 4tiD e3* 0 

are hermitian and can be used to regularize the trace just as we did for the scalar 
case, without any of the complications described in (4.13)-(4.14) and we obtain 
(4.19)-(4.21) directly. 
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To compute, for example, the superstress tensor (supercurrent) of various 
systems, it is useful to give the complete solution of the vielbein to linear order. 
Linearizing (B.29)-( B.30), we find 

V,=&+D+E-?’ +DpE+“)D+ 

+(iD+D-&TTT -dTT,!?+T’ +2D+I?TT)M+O(bE2) 

and 
sdet EAM = 1 + str(GEAM) + O(6E2) (B.35) 

=l+f(D~E--p-D+k+++)-~++-E--+8(6E2). (B.36) 

where 6E means all linear terms. 
It is also interesting to find how the x-space components lie within the vielbein. 

We use a nontrivial modification of standard techniques [9] to find a Wess- 
Zumino gauge choice in which the conformal gauge choices in superspace 
(E, = e*D,) and in x space (earn = pS,“, I,,+, = y,x) are compatible. In the usual 
procedure, one fixes a Wess-Zumino gauge V,I = a,, which is clearly incompatible 
with the superspace conformal gauge choice. We therefore begin with a gauge 
choice 

E,j = e-1/4a,, E,I = err + e - 114t+b,pa, 

a,=s,~a,, e, = e,ma rnr e = det e,” 
(B.37) 

where XJ denotes the o-independent projection of A’. The powers of e in (B.37) 
follow directly from the condition that the component conformal gauge eom = 

-“‘Sam, @up = (Y,x) +-+ ti + 4 ’ = 0, 
iauge (B.5)-(B.7): 

b e compatible with the superspace conformal 

E,=eiDk*E,+= e2sa+ + T ie**(D, $) D,. (B.38) 

Then taking (B.37) substituting into the constraints (B.22), and imposing the com- 
patibility of (B.38) with the component conformal gauge, a straightforward 
putation gives 

com- 

-4e1/4($++ he+&,)& 

-++e1i2$TrFe++ +e”‘*..‘eTT +f+M 1 (B.39) 
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where the component connection (b + + has torsion: 

S is the x-space auxiliary field of the supergravity multiplet and f+ is easily 
determined but uninteresting. Note that in component conformal gauge, 

4 *+= -L *e f f In e and E + reduces to - 

E, = [eeLi4+~(0+$+++ -e~~-~-)+~e+e-e”“(jS+li/---l+++) D,. 
I 

(B.41) 

One can also compute the vector derivative and superdeterminant, and find the 
superspace parameters of component supersymmetry transformations, but we will 
find these from the gauge completion procedure described in Appendix C. 

APPENDIXC: GAUGE COMPLETION 

In Section 2, we have chosen a particular gauge, namely the conformal gauge 
(2.5) for the super vielbein EAM. In this appendix, we discuss the problem of gauge 
completion, i.e., we identify the supervielbein in (2.5) with the corresponding fields 
in the x-space supergravity multiplet, namely the vielbein eom, the gravitino tj,“, and 
the auxiliary field S. 

The usual gauge completion program proceeds as follows [6]: One starts by 
identifying the 8’ component of the superparameter KM, nAB, and 
supervielbein EAM with the x-space parameter and fields: 

K"l,=,= 5”> EamIH=O=eom, 

Kyo=o=EaSI~, Edlo=o= -tic,‘, 

AabjB=O=3Lub. (C.1) 

At higher 8 components, one requires the superspace parameter composition law to 
be compatible with that of x space, and the superspace transformation law of the 
supervielbein to be compatible with the x-space transformation law. Working this 
way, one finds all the 6 components of the superparameter and the supervielbein in 
terms of x-space fields. 

The gauge completion program with (C.l) is fairly easy to carry out [6]. But, the 
result is not compatible with our superspace gauge choice (2.5). For example, one 
always gets Eap(x, 8 = 0) = aRr by gauge completion, but the gauge choice in (2.5) is 
Ezp = etidMP’. Therefore, we have to modify (Cl) in such a way as to make the gauge 
completion compatible with the (2.5). To do this, we first make a general ansatz for 
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K”, KG, and nub and fix their form by requiring the superspace parameter com- 
position law 

K,,M = KzNDNKIM - KINDNKzM + S, KIM - S, KIM + aK2pK,Yy;,,6,M (C.2) 

A,* ab= KZNDNAIab- K,NDNA,“b+ A2Ul’A,cb 

-A,arAZ,.b+~lAZab-~~A,lUb (C.3) 

to be compatible with the x-space parameter composition law 

5,zm=5*“anrIm+bE*ym&1-(1tt2) (C.4) 

E12~=~2nanE1z+~122~b(y~bE,)~--(EZym&,) l+b,“- (1 -2) (C.5) 

1 12 rrb=~2nd,~,Ub+~2U’;1,~+~(E2yM~,)~,Ub+$S(E2yUb~,)-(1 -2) (C.6) 

where 8, K2M means the variation of the field in the parameter KzM and the last 
term in (C.2) is due to the anticommutator of D, and D,,‘: 

{D,, Dy} = -a7p,. (C.7) 

The constant a is also fixed by the compatibility requirement. At 8 = 0, we make 
the following identification: 

Km(O = 0) = t”, Kp(6’ = 0) = ePcab,p 

Aub(d = 0) = ioh + +(Eysy. i,b) .sUh 
(C.8) 

where e = det e,,,“. For K”I, the most general identification is K”I = eytm, but it 
turns out that compatibility in the parameter composition law requires q=O. For 
K@J however, it is consistent to keep p # 0 and it turns out that p = - $ in conformal 
gauge. The last term in Aub (0 = 0) is very important; it plays the role of a “compen- 
sating” Lorentz transformation to keep one in the conformal gauge. (The factor a is 
fixed by restricting the vielbein to be of the form (C.9), see below.) 

We now look at the spinor vielbein EmM. Since we know that Emp = ei and 
E,” = 0 in conformal gauge we make the most general ansatz for E,” at the 8’ level 
by adding terms that vanish in conformal gauge: 

E,” = 0 + h(By”), - he -“2(iJ~“)E 

E,“6,” = ePBmB + u(gy. $) 6,” + w(y”),” ($,y,y”d). (C.9) 

’ In this appendix we use the conventions of 161, where the x-space formulation is given. These con- 
ventions differ from those used elsewhere in this paper, which may be recovered by Wick-rotating and 
resealing the coordinates and derivatives appropriately. 
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This choice strongly restricts the 0l terms in K”, and J?‘. We find 

Kp6,” = e- 1’4.sx + ;(amr-) 8” - &Eymyn$m)(ynO)” 

+ $(aJsY . IcI)(Y5fv - mYdY (C.10) 

and 
a = 4, h = -$‘I4 

4 ’ 
o=w= -1 

8’ 

Having determined the 0’ component of the parameters, it is then 
straightforward to evaluate any components of the vielbein to 0’ order. At e2 order, 
it is tedious and unilluminating to calculate everything explicitly. However, sdet E is 
a very useful object, since the supervielbein appears in the measure only through 
sdet E. Therefore we determine the full 0 expansion of E. Under supercoordinate 
transformations. E transforms as: 

SE= KNDNE- (-)N(DNKN) E. (C.11) 

Using (C.10) we can easily determine E to the 0’ level: 

~=~-‘/2-a~~1/4(~~.(~/). (C.12) 

As one sees from (C. 11) one only has to work out the /!I2 piece in Kp to determine E 
to order 8’. We find 

and 
(C.13) 

(C.14) 

APPENDIX D: A LEMMA FOR REGULATED SUPERTRACES 

In this appendix we prove the following lemma: 

s d2k * rZ.K L=:ym ~d2~e-iz’KeH1Me 

= & (sdet gMN)- ‘I2 = & (det 8”‘“) ~ ‘12( gp’” - g,,g”~g”“) Ed,, P.1) 

where H=gMNaN&,+ PM&,+X with g, V, and X arbitrary superfields, Z. K= 
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Z”K,,, = x”‘k, - iPx, is real. We first pull the superplane wave eiz’ K through the 
operator H: 

e- iZ.KHeiZ’K = H+ iV”KM + 2igMNK,8, -gMNKMKN. P.2) 

We now rescale K, -+ MK,; because of supersymmetry, and in contrast to the 
bosonic case [ 1, 21, the measure &kd2x is preserved by this resealing, and we get 

L = :?a s d2k 
m d2x exp 

[( 
$+-&(V”KM+2gMNKNaM)-gMNKNzcM . 1 (D.3) 

Because no factors of M came out after the resealing of k, there are no subtleties 
involved in taking the M -+ cc limit, and we can drop the first two terms in (D.3) to 
obtain 

s d2k 
L= (2rr)zd2ze- 

gMNfbKy - -& (sdet gMN)-‘12. 

The result (D.l) follows immediately (the simplified form of the superdeterminant 
in the last expression in (D.l) follows from the identity gP” -gm,gmPgnv = 
$EP”Epa( gP” - g,,g”“g”“)). A final comment: If we had started with our kinetic 
operator H in covariant form, H=iMNDNDM + ‘.. , though g”” #gMN, 
sdet gMN = sdet gMN and we would get the same answer. This follows because the 
shift a,( + D,] can be compensated by a shift x,, -+ xr + (Ok), in (D.4), which is a 
unimodular transformation. 
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