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This dissertation is a summary of research in various areas of theoretical physics and is
divided into three parts. In the first part, quantum fluctuations of the recently proposed
superconducting cosmic strings are studied. It is found that vortices on the string world sheet
represent an important class of fluctuation modes which tend to disorder the system. Both
heuristic arguments and detailed renormalization group analysis reveal that these vortices do
not appear in bound pairs but rather form a gas of free vortices. Based on this observation
we argue that this fluctuation mode violates the topological conservation law on which

superconductivity is based .

Anomalies and topological aspects of supersymmetric quantum field theories are studied
in the second part of this dissertation. Using the superspace formulation of the N = 1
spinning string, we obtain a path integral measure which is free from the world—sheet general
coordinate as well as the supersymmetry anomalies and therefore determine the conformal
anomaly and critical dimension of the spinning string . We also apply Fujikawa’s formalism
to compute the chiral anomaly in conformal as well as ordinary supergravity. Finally, we
give a Noether~method construction of the supersymmetrized Chern-Simons term in five

dimensional supergravity.



In the last part of this dissertation, the soliton excitations in the quarter—filled Peierls—
Hubbard model are investigated in both the large and the small U limit. For a strictly one
dimensional system at zero temperature, we find that solitons in both limits are in one—to—
one correspondence, while in the presence of weak three dimensional couplings or at finite
temperature , the large U systems differ qualitativly from the small U systems in that the

spin associated with the solitons ceases to be a sharp quantum observable.
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PART A

Introduction

Recent developments in cosmology are clearly marked by the close interaction with both
particle physics and statistical mechanics. According to the standard Grand Unification
Theories, the interaction between elementary particles is described by a gauge symmetry
group which is an exact symmetry only at sufficiently high temperature or in the very early
stage of the universe. As the universe expands and cools down, it undergoes a series of phase
transitions, and this symmetry is spontaneously broken below the transition temperature 1].
These phase transitions in the early universe give rise to topological defects such as domain
walls, strings and monopoles [2]. While the abundence of domain walls and monopoles has
disastrous cosmological consequences [3], cosmic strings can lead to interesting cosmological
effects. A cosmic string originating in symmetry breaking at a scale of 1016GeV has a mass
density of 1022g/cm. Based on this huge mass density, it has been speculated that such
strings can generate density fluctuations large enough to explain galaxy formation [4] and
produce a number of observational effects by acting like a gravitational lense [5]. Cosmic

strings and their astrophysical consequences are reviewed extensively by Vilenkin in Ref. {6].

Recently, another class of cosmic strings has been proposed by Witten [7]. He observed
that under certain conditions, a Higgs field coupled to the electromanetic field could develop
a nonvanishing expectation value in the core of the cosmic string and argued that such strings
should be superconducting. In contrast to the usual type of cosmic strings which only have
gravitational effects, superconducting strings can produce spectacular effects based on their
electromagnetic properties. In particular, they might be observable as a cosmic synchrotron
radiation source. More recently, Osteriker, Thompson and Witten [8] explored the effects of
superconducting strings on galaxy formation. They argued that the electromagnetic radia-
tion of an oscillating current—carrying string loop may substantially exceed its gravitational
radiation and such string loops could heat their surroundings, generating large, dense spher-

ical shells of gas and therefore resulting the formation of galaxies.

A cosmic string is only superconducting if there is a conserved topological charge [7]

1 rdo

where 4 is the phase of the charged Higgs field in the core of the string. Our paper is a
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critical investigation of the fact whether N is truely conserved. Relevant to this question is
a statistical property of the vortices on the string world sheet: Whether vortices are free or
bound into pairs. Similar investigations have been carried out by Kosterlitz and Thouless
[9] on superfluid films where they found that both the creation energy and the entropy of a
single vortex diverge logarithmically with the size of the system. From this observation they
argued that there exists a phase transition at which bound vortjces dissociate into free ones
and that above the transition temperature superfuidity is destroyed. In our case, we find that
the vortex creation energy diverge less rapidly as the entropy and this leads us to conclude
that vortices always appear in form of a free plasma. This simple but heurestic argument is
indeed supported by a detailed renormalization group calculation which is included in the
appendix of this chapter. Based on these observations we argue that the cosmic strings of

this kind are actually not superconducting.
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A charged Higgs boson coupled to the electromagnetical field can obviously not have a
nonvanishing vacuum expectation value, since then the vacuum would be a, superconducting
medium and the photon would be massive. However, as pointed out recently by Witten 1],
the expectation value of this Higgs field could have an inhomogeneous distribution, which
vanishes everywhere except on a lower dimensional object such as a string. He showed
that under certain conditions, the cosmic string created in the early universe could indeed
support such a distribution of the Higgs field and argued that such string could then be
superconducting. Cosmological consequences based on this observation were explored in
Ref. [2].

This paper discusses the quantum fluctuations of such a superconducting string. As com-
mon in many systems with broken symmetries, there are topological excitations which tend
to disorder the system. These fluctuations are particularly important for two dimensional
systems with a O(2) symmetry. For example, the topological vortices in a superfluid film can
be created via thermal fluctuations. At low enough temperatures, these vortices can only
occur in tightly bound pairs and do not change the long distance characteristics of the sys-
tem. However, as the temperature is increased to a critical value, these pairs dissociate into
free vortices and they drive a phase transition which destroys the superfluidity. The phase
transition driven by the vortices is commonly known as the Kosterlitz- Thouless transition
[3]. Similar phase transitions also occur in superconducting films under more restrictive con-
ditions [4]. We investigate the effect of quantum fluctuations in terms of the vortices on the
world sheet of the superconducting string in a similar fashion. Unlike the instantons of the
abelian Higgs model in 1 + 1 dimensions [5], these vortices are not localized in space-time,
the action (or let us call it the creation energy) of a single vortex diverges with the size of the
system and vortices interact with each other through a long ranged potential. However, due
to the effect of the electromagnetical screening, we find that the creation energy of a single
vortex diverges less rapidly' than the entropy, ( in fact, the creation energy ~ InlnL, while
the entropy ~ InL, L being the linear size of the system). Free energy therefore favors the
creation of free vortices. In addition to this observation, we have performed a renormalization
group analysis ( similar to that of Ref. [6] ) which incorporates the long ranged interaction
of the vortices and have found that indeed a condensate of free vortices with finite density is

present in the ground state. The density of the free vortices serves as a "disorder parameter”
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[7] of the system and its nonvanishing means that the system is in a disordered phase. From
this we therefore argue that the proposed superconducting string does not sustain persistent
currents like a bulk superconductor. In a bulk superconductor, the ”disordering agent” is
the Abrikosov string [8]. In the superconducting phase, the density of these strings vanishes

in the thermodynamical limit and the supercurrent is stable.

Let us start by recalling some basic facts about the proposed superconducting string
with Bose charge carriers [1]. One considers a U (1) x U(1) gauge field theory, with gauge
fields A), and R, and Higgs fields o and ¢, interacting according to the following Lagrangian:

b= = 3Fh 3R + Dol + 1Dugl ~ X102 4202 = Lol - floIo + m2lol? ()
where Fy = 0,4, — 8,4, Ryy = OuRy — O R, Do = (8y + ieAu)o and Dy =
(Ou + igRy)¢.

In the range of parameters given by p2, m2 > 0 and fut—m2> 0, the U (1) symmetry is
broken (| < ¢ > | = p), while the electromagnetic U (1) symmetry is unbroken (| < o > | =
0). However, there exists a classical solution to the broken & (1) theory in forms of a string
[8], where the Higgs field ¢ vanishes in the core of the string and approaches p at infinity.
In this case, as shown in Ref. (1], the Higgs field o has the opposite behavior: it vanishes
everywhere except in the core of the string. Provided that the amplitude of the o field in
the string varies smoothly over the range of the coherence length 1/m, ( m being the mass
parameter of the o field, see(1) ) , the dynamics of the low lying phase excitations 0(z3,x0)

of the o field can be treated by considering the following effective action:
1
I= [ dbol-1F2, + K6%(s1,27) (8,8 + eAs)?) 2)
where p = 0,1,2,3 and ¢ = 0,3 and without loss of generality, we have assumed that the

string is directed along the third axis. K is a constant estimated to be K =~ 1 /A

The way to see whether the string is superconducting is to observe that the model defined

by (2) admits a topological invariant

1 a9

Since § is an angular parameter, N so defined is always an integer. In Ref. [1] it was shown

that in a sector with nonzero N, the ground state is current carrying; if N is conserved, the
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current can not decay and the string is therefore superconducting. However, even though
the topologically trivial phase fluctuations can not change the quantum number N, there
are topological vortex excitations which violate the conservation of N , as was originally
remarked in Ref. [1]. A vortex on the string world sheet is a singularity where the amplitude
of the o field vanishes and the phase becomes ill-defined. A vortex with unit vorticity can
change N by one unit. Therefore, N is only conserved if these vortices form tightly bound
objects with zero net vorticity, since at large distances these objects are indistinguishable
from the topologically trivial phase fluctuations. The question about the conservation of N
is hence reduced to a statistical mechanics problem of the vortex gas: Do the vortices appear

in the form of tightly bound objects or do they form a gas of free vortices?

As we shall study the imaginary time propagation of the string, let us consider the
Euclidean version of (2) by a Wick rotation (zo = iz4). In the Lorentz gauge ¥4, = 0, the
components A; and Ay are decoupled and can be set to zero without loss of generality. The

Euclidean version of (2) is then given by
1
Ig = / d*z[= S AiDA; + K83 (21, 27)(0:0 + eA;)?] (4)

where A = 24:1 3%2,- and from now on, the index i refers to i = 3, 4.
m

In order to study the effective interaction of the vortices, we first integrate out A4; to get

an effective action for §. The equation of motion of 4; is given by
AA; = 2K e8%(z,29)(8;0 + eA;) = J; (5)
or in Fourier space

Ai(q) = —qin,-(q) (6)

Let us denote ¢ = (q1, 92,43, ¢4) and p = (g3, g4)- Due to the delta function in the definition
of Ji(z), Ji(q) is actually a function Ji(p) of g3 and g4 only. Integrating (6) over ¢; and ¢
yields

[ da1d0244(9) = ~Ji(p) [ dasday ~amlip)in(lplre) (1)

i +a+a3+df
where ¢ is the thickness of the string which serves as an ultraviolet cutoff of the integral.
Defining A;(p) = fd4a:e“i”qA,-(:c)62(:cl,:v2) we find that the left hand side of (7) is just
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(27)2 A;(p). Therefore

2m Ay(p) = 2Ke[2i(p) + eAy(p)]in(|p|ro) (8)

where ®; = ;0. Solving this equation we obtain

aln(|p|re) 2Ke

) T nlplre) P ) = T

®4(p) (9)

where o = Ke?/x

These relations are to be contrasted with the usual type of Higgs mechanism, where
A;i(p) has a simple pole at the mass of the vector boson or the inverse London penetration
depth. This usual behavior is nothing but the Meissner screening effect. In our case, how-
ever, the "photon mass” cannot result simply because both coupling constants K and e are
dimensionless. The physical reason behind this is rather clear: The electromagnetical field
extends over four dimensional space-time while the matter field is restricted to the two di-
mensional world sheet. The effect of the induced currents in screening the electromagnetical
field is therefore much weaker, and in fact only logarithmic. The singularity in (9) appears
at momenta greater than the physical cutoff 1/r¢ and so will not concern us here. From (9)

we can easily find the effective action for 4:

2 2
I =K [ ot 00— (10)

A vortex (with infinitesimal core radius) located at % is defined by
2 _ 2 —
V0(z) = —27nb*(z — z) (11)
or by the fact that § changes by 27n along any contour enclosing z:

f dz 08 = 2rn (12)

The integer n is called the vorticity. The loop integral in (12) can be taken along the
boundary of the string world sheet . Identifying the both ends of the string and using (3)
and (12) we find that

N(z4=00)— N(zg=—00) =n (13)

7



therefore, a vortex with vorticity n changes the winding number N by n units.
Given the effective action (10), the action of a single vortex is very easy to compute.

From (11) we have 8(p) = 2rne~ "2 /p2. Substituting this into (10) we obtain

dp 1 27w2n? L
> I aln(prg) ~ &2 In(1+ aln;;) (14)

Iy = 20K /

The ultraviolet cutoff of this integral is the core radius of the vortex a ~ 1/m, the scale
over which the amplitude of the o field varies, while the infrared cutoff is simply L ,the
linear extention of the string world sheet. We have assumed that ¢ and rg are of comparable
length. The way Iy diverges with L is a particular consequence of the effective logarithmic
screening. If perfect Meissner screening would take place (like in the abelian Higgs model
in 1 + 1 dimensions [5]), Iy would remain finite. If there were no screening at all, Iy would
diverge like InL [3]. In our case, while the creation energy I, of a free vortex diverges as
InlnL , its "entropy” is simply S = ln(%)z. The entropy term arises in the path integral in
the integration over the zero mode, namly the position of the vortex. The contribution of a

single vortex to the partition function is
Z = DyDe %o (15)

where Dy is the zero mode contribution, Dy = (%;—)2 and D is the fluctuation determinant.

Exponetiating Dy we obtain the entropy term.

Comparing Iy with S we see that in the large I limit, the entropy term always overweights
the creation energy. The free energy F = —InZ = Iy — S is therefore always lowered by
creating vortices. This simple argument strongly suggests that a gas of free vortices is the
favorable configuration. However, this argument is only heuristic in the sense that it only
involves a single vortex, while vortices actually have long ranged interactions. In Ref. [6]
Kosterlitz performed a detailed renormalization group analysis to support a similar simple
argument for the two dimensional XY model. In order to carry out a similar analysis, let

us first find the partition function of the vortex gas. A multivortices configuration is defined

by
726(z) = —212 ni6%(z — ;) (16)
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where n; is the vorticity and z; is the location of the i — th vortex. From (16) it follows that

0(p) = T; 2nn;e~ P [p2, Substituting this into (10) we obtain the partition function of a

vortex gas:

I=(27)’K > nin;G(z; — z;) (17)

iJj
where
d%p 1 e~ iP®
G() = [

=) @ T an(a) 7 (%)

Only overall neutral configuration Y ;n; = 0 contribute to the partition function, since

nonneutral configurations have infinite action associated with them. For a = 0, this reduces
to the partition function of a two dimensional Columb gas, interacting with a logarithmic

potential.

In order to find out about the presence of free vortices, one adds a chemical potential
term —Iny ) ; n? to (17) which controls the density of vortices. Our question can therefore
be formulated in a more precise way : Is the added chemical potential term a relevant or
an irrelevant perturbation in the sense of the renormalization group flow ? The partition
function (17) only reveals the degrees of freedom at the scale of the ultraviolet cutoff a; at
this scale, it is impossible to distinguish tightly bound vortices from the free ones. To see
their differences, one has to go to larger and larger scales by the procedure of coarse graining,
or integrating out small distance fluctuations. If vortices are tightly bound, coarse graining
would decrease their effective density , since at distances larger than their separation, they are
indistinguishable from topologically trivial phase fluctuations; y and therefore the effective
density of vortices scales to zero. On the other hand, if there is a gas of free vortices present,
coarse graining will only increase their effective density. Vortices becomes the dominant

configurations at large distances.

We have carried out a renormalization group analysis to the lowest order in perturbation
theory in y, with only vortices of unit vorticity included. The calculation follows the approach
of Ref. [9]. The idea is to map the partition function of the vortex gas to a field theoretical
model by means of a duality transformation and then carry out a standard momentum

shell integration. (For details of the calculation, see Ref. [10]). To the lowest order, the

9



renormalization group equation we obtained is of the following form:

K2e? dg da 2z K
dK = — — d dy=—y—(——---ooo -9
T a an y y a (1+aln% ) (19)

where a is the renormalization scale. Constants e and 7o are unrenormalized. This renor-
malization group equation posses a line of fixed points y = 0. This agrees with the common
knowledge that for y = 0, only topologically trivial phase fluctuations are present and they
lead to algebraically decaying correlation functions in two dimensions. For e — 0, ( recall

that a = E,:—z), (19) reduces to the Kosterlitz-Thouless case:
d
dy = —y:a(27rK —2), yxa? 2K (20)

This indicates that for K < 1/, the line of fixed points is infrared unstable, and the

perturbation is relevant, while for K > 1/x the line of fixed points is stable. In our case,
from (19)

(21)
where Ky is the value of K at the scale a = ry. For large a, y always increases as one scales

towards large distances and the entire line of fixed points is infrared unstable . Vortices are

always relevant!

In conclusion we therefore find that the renormalization group analysis confirms the
simple argument based on creation energy versus entropy : the string world sheet is indeed
populated by a gas of free vortices and they represent the dominant fluctuations at large
distances. This implies that N is not a conserved quantum number and different N sectors
do communicate with each other. In the presence of dissipation, the system will relax until
it reaches the absolute ground state with N = 0 which is not current carrying. In this sense
we argue that the cosmic string with Bose charge carriers is not a superconductor. Similar

analysis of the cosmic string with Fermi charge carriers is still under investigation.
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useful discussions. This work is supported in part by the National Science Foundation under
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Appendix
In this appendix, we shall derive the renormalization group equation (19) paper 1 by
following a similar approach of Kogut [10]. The main idea is to map the partition function
of the vortex gas to a field theoretical model with well-defined propagators and vertices in

order to perform the standard momentum shell integration. Let us denote the density of

vortices by

m(z) = Z:n,- 62(::: —z;) (A-1)

with z specifying the position on a two dimensional lattice with lattice spacing a. The

partition function then becomes

Z=Y KL, m(@m(z)G(a-s)+iny T, m(s) (A-2)

m(z)

with G(z) defined in (18). We can perform a duality transformation on (A-2) by introducing

a new Gaussian variable ®(z), up to a multiplicativ constant, (A-2) can be represented by

7= [[D3(z)] Y, Zelatp (@A (e)t2im(z)2(x)+iny m (o) (A—3)
m(z)
where
A = 7*[1 = aln(] 7 |ro)] (A - 4)

is a kinetic operator of the ®(z) field which leads to a prpagator of the form m%;ﬂﬂf_oj
in the momentum space. For small y, only m(z) = 0,%1 contribute significantly to the
partition function, in which case the summation over m(z) can be carried out in a trivial
way: |
T im(e)®(a)Hny mi(e) _ | Jyt2id(e) |, Iny—2i8(z)
m(z)=0,+1

=1+ 2ycos2®(z) ~ 2ycos2®(z) (A—5)
Substituting this into (A-3) we obtain
7 = /[D@(m)]ezm[;ﬁ}‘@(w)AQ(z)+2ycos2¢(z)]
— /[D@(z)]ef d?z[®(2) A®(2)+pcosdnV K &(z)) (A -6)

12



where we have taken the continuum limit and rescaled ®(z). p is defined by p = %g. At
e=0,A =2 and (A-6) is nothing but the generating functional of the sine-Gordon model.
At e # 0, extra nonlocal interactions are present. However, the quadratic part still gives

a well-defined propagator and the renormalization group procedure can be carried out as

usual.

To carry out the momentum shell integration, we cut off the ®(z) field in (A-6) at a

scale A:
A d2p

® () :/ (27r)2

and we want to obtain a effectiv action for the field ®,:(z) cut off at a scale A’ < A by

e’ $(p) (A-T)

integrating out the fluctuations k(z) = ®,(z) — & 5/(z) which is restricted in a momentum

shell bounded by A’ and A. We note that

Zy = [(Dep(2)le] F22u()A20(a) 51 (4-8)
where
P /[ Dh(z)Je J @2[h(z) Ah(z)+pcosanvVE (B o (2)+h(z))] (4-9)
To the lowest order in g
Z' 14 p< / PzcossmVE (B p(z) + h(z)) > (A - 10)

where the average of a operator O is defined by
<0>= / [Dh(z)] O &f Fh(z)Ak(=) (A-11)

Since only Gaussian integrations are involved, (A4 — 10) can be evaluated easily:

< cosdnVE (@ (=) + h(=)) >= A(0)costrvVES pi(z) (4-12)
where
2o A . A g2 e ir®
_ —4TKG0) = P A—-13
AD)=e ond  G(o)= [ (27)% P2(1 — odn{[plro)) -1
Therefore
71 = HA0) [ d?zcosanVE S \i(z) (A —14)

13



and by substituting this result into (A — 8) we obtain

ZA — /[D‘PA'(ZD)]C‘I dzz[QAz(z)A‘I)A:(z)+uA(0)cos41r\/T{—<I>A:(z)] (A . 15)

After rescaling the cut—off A’ back to the original cut-off A by a change of integration
variables, we find that the renormalized partition function has the same functional form as

the original one, but the new parameters are

! a

o = T ETA] b= pA0)A' /AP and e =e (A - 16)

The differential renormalization group equations in (19) of paper 1 easily follow from (A—16)
by letting A’ = A — dA and converting the momentum space cut—off A into the real space

cut—off a.
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PART B

Introduction

Anomalies and topology have played a unique role in the recent developments of particle
Physics. Since the discovery of chiral anomalies about two decades ago in the investigation
of 70 decay and triangle graph [11], their impact on theoretical physics has reached far be-
yond the original scope. The subsequent developments have not only deepened our physical
understanding and extended possible applications of anomalies [12], they also have revealed
a profound connection between anomalies, differential geometry and topology [13]. In this
part of the dissertation, we present investigations of chiral and conformal anomalies in su-
persymmetric quantum field theories by following the path integral formalism of Fujikawa

[14], and construct the topological Chern—Simons term in five dimensional supergravity.

The connection between the path-integral and the chiral anomaly was first established

by Fujikawa [14]. He noticed that a chiral transformation
$(2) = HEy(a)

in the path-integral
7 = [(aplame ] SOt sy

gives rise to a Jacobian factor

J= e——2ifd420(:c)”Tr”'ys

where the trace "T'r” has to be defined by a careful regularization procedure. One way of

regularizing the trace is to define a set of orthonormal eigenfunctions #n(z) satisfying
7(8 + Ap)¢n(z) = Andn(z)

[ *2dh(=)ém(=) = bmn

and damp the large eigenvalues by a Gaussian factor e—*a/M>,

. 32 /g2
"Tr7yy = A}‘_Tmz:%(w) 75 e */M g ()
n
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Evaluating this sum one obtains a nonvanishing trace and therefore the anomalous divergence

of the chiral current jz = J’y,ﬁm/):

#iu=- 672 FuvFpo

In paper 2, we calculate the chiral anomaly in ordinary and conformal supergravity based
on this approach. The chiral anomaly in ordinary supergravity has been computed before by
other methods [15], while the chiral anomaly in conformal supergravity is a new result. These
computations differ from the the original approach of Fujikawa in that both ordinary and
conformal supergravity are gauge theories, the contributions from the various ghost fields
must therefore be included properly. In conformal supergravity, additional problems arise
because of its higher derivative nature. However, by using a theorem of Fujikawa [14] on the
regulator independence of chiral anomalies, this problem can also be circumvented. Summa-
rizing the results, we find that the chiral anomalies in ordinary and conformal supergravity
are —21 and —20 times the anomaly of a real spin 1 /2 field respectivly. The later result is
confirmed in a calculation of the chiral anomalies in the N = 4 conformal supergravity by

Romer and van Nieuwenhuizen [16].

Since anomalies are related to the Jacobian in the path integral, different choices of
the path integral measure would lead to different anomalies. In gravitational theories, re-
quiring the absence of anomalies in the general coordinate transformation uniquely specifies
the functional measure [17]. Viewing the spinning string as a two dimensional field theory
[18], it is natural to require the absence of the world sheet general coordinate as well as
the supersymmetry anomalies. Both transfomations are part of the superspace general co-
ordinate transformation in the superspace formulation [19]. In paper 8, we indeed find a
path integral measure which is free from the superspace general coordinate transformation
anomalies. Having specified the path integral measure, we then proceed in calculating the
conformal anomaly of the spinning string by applying Fujikawa’s method to superspace and
in agreement with previous results [18], [20], we also obtain D = 10 as the critical dimensjon

of the spinning string.

The importance of the Chern-Simons terms in odd dimensional gauge theories was first

pointed out by Schonfeld [21] and by Deser, Jackiw and Templeton [22]. They discovered

16



the novel property that adding a Chern-Simons term
2
P Tr(Fu Ay — §A“AVAP)
to the usual Yang-Mills Lagrangian in three dimensions
T'I'F”'VFMV

leads to a gauge invariant mass which is quantized because of topological reasons. Chern—
Simons terms also play an important role in supergravity and superstring theories. Chapline
and Manton [23] noticed that the coupling of the Maxwell field to supergravity in ten di-
mensions as given by Bergshoeff, de Roo, de Wit and van Nieuwenhuizen [24] can easily be
generalized to a coupling of the Yang-Mills field to supergravity by simply extending the
combination

uvp
e PELWA,

to the Chern-Simons term

Based on this observation , Green and Schwarz [25] discovered the one-loop anomaly can-
celation in superstring theories with gauge groups S0O(32) or Eg x Eg by adding to this
Yang-Mills Chern—Simons term the corresponding gravitational Chern-Simons term
P Tr(Rypwp — ?-w,,w,,wp)
3
and including both terms into the action in a proper combination. Recently this gravitational

Chern~Simons term has been supersymmetrized by Fré [26].

In paper 4, we construct the supersymmetrization of the Chern—Simons term
2
CMVWTF”VTT(RWUJT han EUJP(UUCUT)

in five dimensional supergravity by using the time-honored Noether method. It is found that
the supersymmetrization is only possible if one modifies the fermionic transformation law by
adding purely bosonic terms. We speculate that if this also happens in supersymmetrizing

the gravitational Chern-Simons term in ten dimensions, the compactification on Calabi-Yau

background should be modified.
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1. INTRODUCTION

In this contribution we shall reobtain the chiral anomaly of

simple ordinary supergravity by means of Fujikawa's methodl)

as well
as by the Pauli-Villars method. Then we shall present, as a new result,
the axial anomaly for simple conformal supergravity.

Axial anomalies have been discussed extensively in recent articles.
For supergravity, the issue is, as usual, more subtle than elsewhere,
because one must fix gauges and add ghosts for the fermions in the loop.
The axial anomal in simple ordinary supergravity has been calculated
by various methods, see below. We begin by reobtaining the same result
by means of the original Fujikawa method, since it is interesting in
itself and will be used to illustrate certain aspects in the conformal
computation. We show that using as regulator either the operator which

is obtained directly from the classical action plus gauge fixing term,
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or simply the Dirac operator itself, yields the same result, which
agrees with observations made in ref.z). We present the Pauli-Villarg
computation3) because it most clearly shows which regulator should be
used for a given anomaly. [As an example, we note that in a theory

with only lef-handed spin 1/2 Dirac fermions the regulator is given by

1 1
5?‘““5) +3/(1—Y5) (1)

since massive Pauli-Villars fields contains propagating left-and righe-
handed fields, while, however, only the (left-handed) fermion-loops
must be regularized. ]

The computations in conformal supergravity are based on the
originalipapers of Kaku and Townsend and van NieuwenhuizenA). We will
also use some important results obtained by Fradkin and Tseytlin, who
computed the B-function in N = 1,2,3,4 conformal supergravityS). It
would be interesting to study the multiplet structure of the trace,
chiral and other anomalies of conformal supergravity.

The gravitational spin 3/2 axial anomaly in four dimensions has
been computed by various methods: by determining the eigenvalues of
the relevant Hodge-de Rham operatorsG), by a Feynman graph analysis
(imposing gravitational conservation, the Adler-Rosenberg methodB), by
zeta-function regularization (determining the a, coefficients by the
coincidence limit method of Synge and DeWitt)7, by the point splitting
method7, and by the topological method (determining the index of
certain operators involved)7. Recently, Alvarez-Gaumé and Witten?
computed the gravitational spin 3/2 axial anomaly in n dimensions,
using a direct Feynman graph method (not by imposing gravitational
conservation). They also gave a derivation of their results using a
modificaiton of Fujikawa's method (by introducing & one-dimensional
quantum-mechanical system whose Hamiltonian is equal to the exponent
of Fujikawa's regulator, exp (U/M)Z)r

In this article we intend to give yet another derivation of the
gravitational spin 3/2 axial anomaly, namely following Fujikawa's
original approach for the gravitational spin 1/2 axial anomalyl). For

higher dimensions, this method becomes rather complicated, and the



wodification of ref.z) is more suitable. However, the original
Fujikawa method is rather simple in principle. As we shall show, no
point splitting techniques need be used. We also point out that the
method is quite similar to those Pauli¥illar's regularizations of the
path-integral whose Jacobian for chiral transformations is unity;
however, unlike in the Yang-Mills case, in the gravitational case one
needs more than one regulator, due to the derivative couplings of

gravity.
2. SPIN 1/2 CASE BY FUJIKAWA'S METHOD

Consider a complex massless spin 1/2 fermion ¢ ip a gravitational

background described by vielbeins e: . The generator for connected

(i.e., one-particle irreducible, in this case) graphs reads

W= /dy dV exp [-e EY“Duw] £
Under a chiral transformation of integration variables

Vol 4 avg) v, ¥ V(4 avg) (3)

the path-integral does not change. Hence, the Jacobian cancels the

variation of the action.

- “Tr'(ZaYS) + <-e Eyu75¢>aua = 0 (4)

To regularize the trace "Tr" over spacetime points and spinor indices,
Fujikawa showed that any function f(B2) can be used, provided f(0) = 1.
The most convenient choice is f = exp(ﬁ/M)Z. Hence, using plane waves

in a four-dimensional box

2
"Tr"(ZaYs) = I <il e(ﬁ/M) ZuYS,i >

4 . 2 .
/ da 'k e—lkx[tr e(ﬁ/M) 2ay ]elkx
(2m? 5 (5)
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where tr denotes the trace over spinor indices. By pulling the plane

waves exp ikx to the left, the operator P is replaced by ¥ + 1K , and

one obtains.

4 2 ,,2
"o (2ay ) = [ a’k t’.l:(chS)e_k /M exp(B/Mz)
(27)

B = 2ik+D + D + % R (6)

In deriving this result, we used the cyclic identity for the Riemann

tensor

R (7

VVp abY
Hv ab

] -

Y

| —

%[Y“.y“][nu,nv] =

The evaluation of the integral is performed by expanding exp B/MZ, and
only retaining terms which do not vanish when Mz tends to infinity.

The relevant terms are

-Tr"(qu ) =
5

4 2

i d

(21«)4

2,2
X e K=/ tr2a75 x {1 + 1 (D

+ X pp2
1 Y

-4

{(2ik D) (2ik-D) + (D% + J Ry (D% + % R) |M

)

'..a

+

N

+ 1' {(2ik -D) (2ik D) (D? + % R)+(2ik -D) (D? + % R) ( 2ik +D)

W

1

+ (D%+ % R) (2ik-D) (2ik-D) M6 + 1 {(2ik-D)*}n78)

4!
(8)

Using I dAk - Hk ﬂz I d(klez)(kzluz) and J dy(exp-y)yn = I'(n+l),
o]

we obtain
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'Tr.(qu ) =
5

2a
16«

2,.2 1 2.2
t M“(D + -2)M°D
rvs[ (D) > {(-2)
2 1 2 1 1 2,.2 1
+ D + -~ R)Y(D + — R + -2 D D -—
( 7 R i )} 7 ¢ ) {[p“(D* + 1 R)

———

+p (02 + L r)p* + (02 + 1 Ryp2} 4+ 1 6x16
(" 4 4 4! 24
2.2 2. u v
+
{pD* + D DD p.p D'D }] (9)
The terms proportional to M2 contain Dz, which contains four Dirac

matrices since Du = 3u+ %-wumnym » but these terms are seen to cancel.
n

The terms containing the scalar curvature R cancel, too, since they
are given by

2, _ 1 2
2p v 1 pp?) -1 JpZ%r+ 1o ro*+lr? =L (p%r)

(

I
) -

(10)
which vanishes since (DuR) = (3uR)

so that the trace over YS(DZR)
vanishes.

In the remaining terms, those proportiomnal to (Dz)(DZ)

cancel, too, and one is left with

1 2

a p p°D¥ +
u

Tr®2ay " = try_|[-
3 8“2 5

| =

{o p?p* + p D D"D"}]
u vV

wi

= trYs[D va][Du'Dv]
96w2 u

b
. try (1R 2
5 4 uv

R 96

1 uvcd
Y(—~ R Y
YaYb 4

)
ch

1 abcdy  pwv (1)

i 9612 X uvab cd
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This result as well as some of the intermediate steps are identical
tol), but we have avoided the use of point-gplitting techniques in
order to simplify the calculations. We will use the intermediate

steps of this derivation when we discuss the spin 3/2 anomaly.

3. THE SPIN 3/2 CASE BY FUJIKAWA'S METHOD

Let us now consider the spin 3/2 case. The Rarita-Schwinger
action for a real massless spin 3/2 field in an external gravitational
field which satisfies the Einstein condition Ruv =0 (Aecessary in
order that the Rarita-Schwinger action be gauge-invariant by itself

under qu =- Duc) reads, after adding the usual gauge fixing term

L =-23"D v +SV vy - v
2 ¥ p O 4
= VYN P v v =SV (r)¥ Dy (12)
4 v p o 2 p o
w _ 1 opu

where (r°) E FYYY. Throughout we will suppress the spinor
indices of the gravitino, but we will often explicitly exhibit the

vector indices of the gravitino.

"Tr*(2ay =
5)

4
[ 8k e'ikxtrZGYS exp |

(2!)4 M

u v
(r Du)(f Dv)}eikx

2 (13)

3 ¥ aVv uv
using {r¥r }ao = 29" g . we get

"Tr"(2ay =
{ 5)

4
2k e iK% o ay exp M 2(p? + 1 [r¥,r¥}[p ,p ])eikx
(27) 5 4 BV
4 2
- /9 k‘ tr2avy exp(ZX_) exp(B/M?2) (14)
(27) M2



where now

B = 2ikeD + D2 + C, C -.:. [ru, r 10", o] (15)

.7
The evaluation of [ru,rv][Du,Dv] was given in ) but for

*

completeness we will rederxrive it here.

1 1 a
= (T r p ,b = _{(YYYY ¥ Y)
cxp 2( u)Xn( v)uel u' V]BD 8 a uw i B8 v

ab g + R

1
x - R Y Y I
[4 uv  a b gp Bouv s] (16)

The symbol 18 denote the unit matrix in spinor space.

Elementary Dirac matrix algebra leads to

! a1 - +9 g - ¢ Y )
B8 YaYquYeYvY z(guxgsv guang v AB uABY S

(17)

since yaypuyu = 0 in four dimensions. Hence

1 1 ab
= - = € Y ){= R Y. .9 )
CXD (guxgav 2 ul8v 5 4 uv ab™ 8p
1 ab 1 cd 1 ab
= _ R + —~ R Y = _ R Y (18)
4 p Yab 4 p cd 2 Ap ab

1
1 = = -
nstead of using (ru)po 2 YoYqu one ;ould have used (ru)oc
gchu in the regulator. As claimed in ref.“, "under certain broad

assumptions" the result should be the same. In our case it is easy

to see that this is true. Namely, not only is r(vrv) =g but

uy
also C comes out the same. To see this, note that
Ap
1 _uv 1 _uv
C = Y b ,D = Y b .,D
Ap 2 gAB[ u v]Bp 2 [ ' v]Xp

Y¥Vr
uvip

N| -

{19)
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since the first term in [Du, Dvl' namely YuvRuvebYab, does not con-
tribute, due to the cyclic identity, when Ruv = 0.

Thus the only difference in the expression for B for spin 3/2
as compared to spin 1/2 4g that the term %'R is replaces by
% Rkp.bYab' In the 'spin 1/2 case, the % R terms did not contribute
at all. Looking at the expansion in (8), we see that the ciurvature
term in the term with 1! still does not contribute, since it only
has two Dirac matrices. The sum of all terms with only one. curvature
term is still as before, except that in this expression % R 1is again
to be replaced by %‘RxabYab- These terms again cancel, because they
are equal to ((D )Au 3 de‘b)Yab which does not contain emough
Dirac matrices to contribute (namely, it contains only the explicitly
shown Dirac metrices Yab)' Thus the only modification comes from
the R> term in "Tr"(2 YS)'

One finds for this contribution

R%-term = _2%_ ¢r Y

. ab 1 vucd
R Y M~ R Y )
1612 5 b2

pv cd

[NY

1
3T (

" 202 (- l)(cadeR RYY )
16 % 2 wvab cd

(20)

the terms without any curvature arrange themselves as in the spin
1/2 case, except that one must multiply the result by four, since
one must trace over the vector indices as well as over the spinor
indices of the gravitino. Thus the result from the gravitino plus
gauge fixing.terms to the spin 3/2 anomaly is

"Tr"2ay = _% (1 €abcdR R®Y _
5 ;;:5 2 uvab d)(4 24) (21)

To obtain the complete anomaly, one must add the contribution from

the Faddeev-Popov ghost (a complex spin 1/2 ghost with the same chiral
weight as the gravitino) and of the Nielsen-Kallosh ghost (a real
ghost, coming from the ¥ in the gauge fixing term, whose chiral weight
is opposite to that of the gravitino). The sum of these contributions
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is ¢-1) and the total result is -21 times the anomaly for a real spin
1/2 field.

4. THE SPIN 1/2 CASE WITH PAULI-VILLARS REGULARIZATION

Let us now rederive the spin 1/2 axial anomaly, using Pauli-Villars
regularization. We shall need two Pauli-Villars regulator fields,
because, as we shall see, terms with the operator D2 which vanish in
the trace over spinor indices in the Yang-Mills case, do mo longer
vanish in the gravitational case, and are, moreover, divergent. These
divergent terms cancel if one employs two regulator fields. We

consider

z = [(a¥Wd¥)(dx,dX,) (dx,8X,)exp S
= 4 1 5. ¥ .
s = Ja'x[-eVy (D, + iA vg)¥
2 . _
+i=i1 {-—exiY (D + IAuYS)Xi - eMixixi}] (22)

We choose the chiral weights of X4 such that the measure is chirally

invariant
sy = ay_v, 8y, = - 2y 23
5 4 X 2 X. ( )

After a chiral transformation we obtain

0

XY X - L XYMy x )2 e (24)
M

AS —
1 51 2 2 5 2

jatx —e(ivuvsw -

[N

+oeaMy X, Ygxy t €My X;Vg5X,

Integrating over Xy we obtain the product of the inverses of the
determinants of the kinetic operators for Xy and Xy (which are complex

commuting spinors). One finds, expanding to first order o
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-1 -1 2 -1 -1
det (A)+B,)det (Ay4B,) = 111 (det A,) II-TrAi B; ]

A= -ey"(D + iAy J-em + © Yy 2 a
i u 5 i 2 5 u

B, = aeM; v, (25)

Re—exponentiating (detA)-l, one obtains, to first order in o, apd

dropping the axial vector field

<-eEY"YSv + % x My x4+ % x. Y'Y x >3 a

2
1 -1 -1
= B A B = T (aM Y )
Tr(A + X ) 131 r T?TEIT al i7s

2 4 . .

d 'k -ikx 1 ikx

= Z ] tr e (-aM v ) 7‘_‘ (¢’M.)e

i=1 (2")4 i5 ¢ +Mi)(¢ M) i

2 4
= 1/ 2X ream vy ! S (B+if-m )

i=1 (2x)4 1O (e - M’ Y (26)

since the denominator contains an even number of Dirac matrices, we

can drop the P + 1K i the numerator, and find

4 1

1 (2m) Y5 k% M%) 4 2ikep o pZ+ 1 g
b 3

1
4



1

2
) % | a‘x Y

[1 +(2ik-D + D% 1 Rr)/(x24n2)
=t 2ot (kw2 ‘ !

(2ik -p)%+(p2+ 1 g)2
+ 4 + {(2ik-D)(2ik+D)(p%+ ! g)
(x%+ u2)2 3

+ (2ik-D)(D2+% R) (2ik D)+ (D %+ % R) (2ik D) (2ik-D) }/(k2+M2)3
1

+ (2ik-D)4/(x2? + mhH4) (27)

The terms with (tr 75D§ are logarithmically divergent, and the spinor
trace does not vanish a priori. However, assuming that ZMiz = 0,
these terms are regulated. This is the motivation for using two
regulators. The result resembles our previous result for the spin
1/2 case in many respects; however there are some differences: the
first wo terms with two D's no longer cancel but add up to

2.4 2 2.3
[-D™M 1]/(k + Mi) .

Using
N0 S L ¥2(u2)2+m=n T(n-m-2) I (m+2) (26)
(k2+ H2)n I'(n})
we obtain
2 iy 2
I rea B, = ] tr(- v [(¥2p? + p2p? 4 1 gp2,
=1 i=1 3222 3 i 2
- 2 (20202 4 3 pp? 4 p p2p¥,
3 4 W
+ 2 %2+ ppopip¥ap p?pY) ] (29)
3 ITHRY) u



404

As before we have dropped terms with DuR = aux since they do not
contain enough Dirac matrices. The terms with RD?2 cancel again,
(the numerical coefficients coming from the k-integral are essential

for this), and the R-independent terms yield agein a double commutator.

z -1 z a 2.2 .1 w o
I TeAU B = ] er( v) {M{p% + =(p D 1(0%,D 1}
i=1 b1 32 . vy (30)
1f we choose the regulator measses such that Mi + Hg = 0,
then the H2D2 terms cancel, and one obtains
2 _ v
Y Tr AT 's = tr(._g_i 15) Yo ,Dv][Du,D )|
i=1 i 32 ¥ (3D

which is the same result as obtained from Fujikawa's method.
5. THE AXIAL ANOMALY IN N=1 CONFORMAL SUPERGRAVITY

In this section we use Fujikawa's method to compute the axial
anomaly in simple {N=1) conformal supergravity. This is the first
time that this method is used to obtain a new result. Of course, the
method has also been used extensively to reobtain in elegant ways
results which were previously obtained by laborious techniques such
as the Feynman graph computations by Bardeen and Adler-Rosenberg.

In our case, the Feynman graph calculations would have been very
cumbersome, while Fujikawa's method is quite simple, despite the fact
that one is dealing with a higher-derivative theory, due to a lemma
(see below) according to which one may replace the regulator $3 by ¥
in certain cases.

We begin by using a result derived by Fradkin and Tseytlin5,
who cast that part of the N=1 conformal supergravity action which

contributes to one-gravitino-loop graphs, in a simple form. It reads
- 43 2 < 1 -3
= - ¥ -2 Pe+ — xBx (32)
I’ ovo 3¢ 2

where the gravitationally covariant derivative I)‘J contains both a

spin-connection and a Christoffel part, and where further
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e =¥ + 1, x= (33)
v 2 u
We have put the chiral gauge field A to zero. Moreover, we
have assumed that Ruv = 0, which is necessary in order that the gravi-
tino action by itself be invariant under the ordinary and conformal

supersymmetry transformations, which read

8 ;s & = €

Q*u = DueQ ' S*u Tuts (34)
The easiest way to see that the gravitino part is separately invariant,
is to note that its variation must cancel the variation of the Weyl

action Rvu2 - % Rz. Since the latter variation vanishes when Ruv = 0,

so does the former.
We will cancel the last two terms in the gravitino action by

adding the following gauge fixing terms
- 2 - 1 —g3 (35)
L (gix) =3 e - > xP” x

Thus we have two gauge fixing terms, namely F© = (¢,x), which will
yield the usual Faddeev-Popov ghosts, while we also must take into
account that the normalization determinates of ¥ and F3 will give
rise to Nielson-Kallosh ghosts. The Faddeev-Popov ghost action is
obtained by varying F*  with respect to the (Q,S) supersymmetry trans-
formations with parameters Cu = (cQ,cS), and sandwiching the result

with commuting ghosts and antighosts. This leads to
- .3 -
X (PP ghosts) =T (2 pc + 3pc ) + € (P + 4C 36
Q2 o Q S S p Q S) ( )

The exponentiation of the gauge fixing terms in the Dirac delta
functions in the path-integral requires as normalization factors

(det U)-llz

commuting Majorana spinors. These determinants cannot be exponentiated

and (det v)-3/2, respectively, since ¢ and x are anti-

as they stand, because they would require a commutinp Majorana spinor

whose Dirac action is a total derivative. The resolution is by now
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well—knowns): one replaces 5‘1/2 by l—ltl/z and exponentiates by
introducing a complex commuting ghost F and a Msjorana anticommuting
ghost f. Similar remarks apply to (det D)-BIZ with ghosts G and g.

In this way one obtains the following ghosts

I/(NK ghosts) = -Fpr - Epf - C¢3G - §¢3q. (37)

We must now determine the chiral weights of all these ghosts.
For the Faddeev-Popov ghosts we follow re£.72 and consider interaction

terms like

P [s]
CQ(D apupucg c. ) + C (y zapwpcg c.)+... (38)

+Ca

where Cg c is the general coordinate ghost. Requiring chiral in-
variance of the complete Faddeev-Popov action vields the following
chiral weights,

WOV = 41 wld) = 41, W) = -1, w(Tg) = 4

w(CQ) = +1, w(CS) -1. (39)

For the determination of the chiral weights of the NK ghosts we follow

9) Namely we require that the part of the chiral current cor-
responding to the gauge-fixing term is cancelled by the part of the
chiral current due to the NK ghosts. This is because in the un-
weighted gauge neither gauge fixing terms nmor NK term are present
in the gquantum action. This argument shows at once that the NK
Q-ghosts and the NK S-ghosts have opposite chiral weights.

We can simplify the quantum action by intergrating in the path

integral over C . This yields a Dirac-delta function 6(4C + BC )
which replaces C by - % ﬂC after integration over C . Hence we

finally obtain

- 3 3 =
{quantum) = -% v + 2. C mC +J(NK ghost
i o,’ p 4 Q o) I'( ghosts)

{40)
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We now turn to the computation of the chiral anomaly associated
with the global chiral invariance of éz?quantum). We must evaluate
according to Fujikawa's method, the trace of the matrix YS for all
fields, where w 1s the chiral weight of the field considered. More-
over, in the computation one must regularize the ill-defined sum over
spacetime points by the same operator as appears in the action. The
Justification of this procedure can, in our opinion, best be seen by
comparing this Fujikasw computation with & Pauli-Villars computation
in which the Jacobian is exactly unity but where now the anomaly
resides in Pauli-Villars fields (see before). Hence, we use as
regulators the operators exp R2 where R is given by (BVM)3 for wp

We now argue that the sum of the ghost contributions to the

axial anomaly cancels. For the FP ghosts this follows easily from

the fact that EQ and CQ have opposite chiral weights. This means
that their contributions cancel in the Jacobian. For the NK ghosts,
we make use of a general property of both the Fujikawa and the Pauli-
Villars methodsl), namely that any regulator f(R) with £(0) = 1 and
vanishing sufficiently fast at infinity , will give the same result.
Hence, instead of v3 operators we can take simply the P operator as
regulator. Since both F and G, and also both f and g, have the same
regulators but opposite chiral weights, their contributions cancel.
All that rema1ns to be computed is the anomaly due to ¢

with regulator ﬁ , or rather, invoking the arguments presented above,
with regulator B. This computation was already performed in section

(3). Hence we conclude
chiral anomaly of N=1 conformal supergravity theory = (-20)A

where A is the chiral anomaly of a real anticommuting electron.

We conclude this section with a few comments.

1. The chiral weights can also be determined by keeping the
chiral gauge field Au in the quantum action, and defining the chiral
current by the coupling terms to AU . As shown by Fradkin and

TIseytlin, Au appears as



-‘va*wp - ; Wo + % wieetx (41)

where

u 3i + v 3i
= p - = and = Yy (D + == AY.).
¢ v u 4 AuYS) ’ ( u 4 u S

(42)

Clearly, .Z?class) is locally chiral invariant. Frow the exponentia-
/2

tion of !-1 it follows that the commuting Majorana spinor (which
should really be replaced by F and f as we explained) has the same
weight as the gravitino. The chiral weight of G and g follows most
easily by writing
det(¢+$¢+)—1/2 - (det¢+)_1/2(detv)-1/2(det¢+)_1/2

(43)
and observing that after exponentiation one would have three chiral
currents from three commuting Majorana NK ghosts with weights -1,
+1 and -1 respectively. Hence, the chiral contributions of the NK

ghosts indeed cancel. The FP ghost action contains the following

terms linear in A

T 2o -1p ¥
[4 e Dv]CQ (44)

This yields a chiral current

s 3
j =2C3yc -1,
¥ 4 Qus5Q 4 v(CQYuvYSCQ) (45)



409

The first type of current has no anomaly while the second current is
identically conserved.

2. For higher N models, spin 1/2 will contribute, in addition to

N gravitinos. In particular, for N=4, one expects finiteness, since
Fradkin and Tseytlin showed that the B8 function vanishes in this
model., Actually, the local guage group is SU(4)in this model, not
U(4), and although there 1s a composite local U(1l) gauge invariance,
it 1s not part of the expected anomaly multiplet. Hence, in the N=4
model vanishing of the chiral anomaly is replaced by absence of a
chiral current; a rather trivial solution.

3. The N=1 conformal supergravity theory by itslef has anomalies in
its coupling of the axial vector field, and thus, this theory is
inconsistent. However, one can cancel these anomalies by coupling

conformal matter.
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Using the superspace formulation of the N =1 spinning string, we obtain a path integral
measure which is free from world-sheet general-coordinate as well as Q-supersymmetry
anomalies. Using this measure the conformal anomaly is explicitly calculated by extending
Fujikawa’s method to superspace. A complete solution of the 2-dimensional supergravity con-
straints is given. 4% 1986 Academic Press, Inc.

1. INTRODUCTION

Fujikawa [1] has emphasized the importance of the functional measure for the
understanding of anomalies: Different choices of the measure lead to different
anomalies. For example, in Yang-Mills theories the requirement of gauge
invariance determines a measure for the fermions that gives the correct chiral
anomaly. Similarly, for systems coupled to gravity, coordinate invariance deter-
mines a measure that gives the correct trace anomaly. For a scalar field ¢ one finds
that the correct measure, in any dimension d, is D(g'*¢) (where g is the deter-
minant of the metric), whereas for a covariant vector field 4,, with curved index the
measure is D(g?~**!4,,). If the measure cannot be chosen to be invariant under all
symmetries of the action, one has anomalies in each of the violated symmetries.
One computes the anomaly by carefully defining (i. e., regulating) and evaluating
the Jacobian determinant of the transformation. The measures above are found by
requiring “naive invariance,” 1. ¢., that the unregulated Jacobian for general coor-
dinate transformations be a total derivative.

When the gravitational field itself is quantized, the natural symmetry one would
like to impose on the measure is BRST invariance, which is the residual rigid sym-
metry that remains at the quantum level after the local classical invariance has been
fixed and coordinate ghosts have been introduced. Since the coordinate ghosts and
antighosts serve the purpose of removing the unphysical degrees of freedom of the
graviton at the quantum level, their measure should be treated simultaneously with
that of the graviton. Moreover, since antighosts never have an antighost field in
their BRST transformation rule, their contribution to the linear term in the
Jacobian vanishes identically. Requiring that the product of the measures of the
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graviton and the ghost be BRST invariant, one should be able to deduce the correct
choice of integration variables. However, technical problems in this approach
[1, 2] lead to a modified prescription in which one treats the vielbein e, and the
ghost C” as covariant and contravariant vectors, respectively, and requires their
measure to be invariant under general coordinate transformations. This prescrip-
tion is known to yield correct results in all examples [1, 2].

In this article we extend these ideas to superspace. We find the supercoordinate
invariant measure for scalar superfields ¢ is D(#E~"?) where E=sdet E ,* is the
superdeterminant of the inverse vielbein. To determine the measure for the vielbein
and ghost superfields, we follow the prescription above and require invariance
under supercoordinate transformations for contravariant supervectors. This
procedure leads to two surprising results: the measures for the vector and spinor
components of the supervectors have different powers of E, and these powers are
not uniquely determined by supercoordinate invariance. We fix the measure by
assuming that for the superghosts with flat indices the measure is the same as that
for scalars, and then transforming to curved indices [12]. Having found the correct
measure, we rederive the critical dimension of the N =1 spinning string. {Using dif-
ferent methods, Martinec [3] gave the first superspace derivation of the critical
dimension). This concludes the body of the paper.

Several related issues are discussed in the appendices. In Appendix A we present
our notation and conventions, and review D=2 superspace. In Appendix B, we
describe D =2 superspace supergravity and give a complete solution of the Bianchi
identities and the constraints in an arbitrary gauge; solutions in restricted gauges
have been given in [4, 5]. We also derive some of the results of Sections 2-4 in
spinor notation. In Appendix C we identify the supervielbein components with x-
space fields using a nontrivial extension of the gauge completion method [6].
Finally, in Appendix D we derive a lemma for the evaluation of regulated super
traces.

2. THE SUPERSPACE QUANTUM ACTION OF THE SPINNING STRING

In superspace the dynamics of a spinning string can be described by matter
superfields X'(x,0) (i=1,.,d) coupled to the 2-dimensional supergravity
multiplet £ ,*(x, 8) [5]. However, the 16 components of E ,* contain too many x-
space fields, and these are eliminated by imposing constraints. Following [3], we
choose the following set of constraints on the torsion tensor T, (the notation is
summarized in Appendix A).

Taﬂ‘. = 21‘(’))[.)1[} (21 )
T,/ =0 (22)
T, =0. (2.3)
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The Bianchi identity

D Ty’ + Tiup" T,y =0

implies a further constraint

T, =0. (2.4)

In Appendix B a complete solution of these constraints in terms of unconstrained
superfields as well as a solution of the Bianchi identities is given. For the purposes
of the present paper we do not need this explicit solution. Instead we reproduce
here the argument given by Martinec {3]. Just as in four dimensions, (2.3) can be
used to express the bosonic connection ¢, in terms of the vielbein, while (2.1), (2.2),
and (2.4) determine the bosonic vielbein £, in terms of the fermionic vielbein £,
The constraint (2.2) not only expresses the fermionic connection ¢, in terms of the
vielbein, it also provides two more constraints on the fermionic vielbein E,*.
Therefore we have only six independent components of E,* left. If one fixes the
gauge for the 4 supercoordinate transformations and the 1 local Lorentz transfor-
mation, one is left with only one superfield degree of freedom, the conformal fac-
tor . This corresponds to the x-space conformal gauge, where one has only the
trace of the graviton, the y trace of the gravitino, and a single auxiliary field left. By
direct computation, or as explained in Appendix B, one can check that the con-
straints (2.1)-(2.4) are satisfied by

E,=e'D,,  E,=e¥d,+ie*y (DY) D,. (2.5)

(We have not distinguished flat and curved indices on the rigid superspace
derivatives, i.e., D,=6,“D,,. See Appendix A for further details of notation).
Locally, any vielbein can be obtained by applying a gauge (Lorentz+
supercoordinate) transformation to (2.5).

In Polyakov’s approach to string theory [7], one treats the vielbein E * as a
dynamical variable and integrates over it in the path integral. One therefore fixes
the gauge to factorize out the volume of the gauge transformations. We make the
following five gauge choices:

E;/"=0

(2.6)

E'=E’=¢e"
(1 and 2 are fermionic indices and are called + and — in Appendix B) to fix the 4
supercoordinate transformations and the 1 local Lorentz transformation. Given
these gauge choices, the torsion constraints imply that the vielbein is of the confor-
mal form (2.5). To see this, we have to show that E,?> = E,' =0, since the fermionic
vielbein is then completely specified (see also Appendix B). The bosonic vielbein is
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then of the form in (2.5) since the bosonic vielbein is solved in terms of fermionic
vielbein through the torsion constraints. To see that E,;>=E,' =0, let us consider

{VOU VB} = Taﬁcvc + RaﬁM
= 2i(y),, V. + Ry M. 2.7)

Since (), 1s diagonal (see Appendix A), we have
(V,,V,} =R, M. (2.8)
In the gauge of (2.6), we have
Vi=e'D,+ED,+¢,M
V2=€WD2+E2]D1+¢2M. (29)

On the left-hand side of (2.8), we collect terms involving space-time derivatives:

¢"Ey'{Dy, D\} +e"E*{D,, D)}
= —2ieVE, (6o + 0,)—2ieYE *(8,—0,). (2.10)
Since the right-hand side of (2.8) does not contain any terms with space time
derivatives, we conclude that

E,)=E>=0. (2.11)

This shows that in the gauge (2.6) the vielbein is of the conformal form (2.5).
In the following we work in the unweighted gauge of (2.6), i. e., we insert explicit
é-functions in the path integral. The next step is to construct the Faddev—Popov

ghost action. To do this we have to consider the gauge variations of (2.6). In
general, we define

oV, =0EMDy +0p M=[E D, +¢ M K'Dy+A-M] (2.12)
where KV and A are the gauge parameters for the supercoordinate transformations

and the local Lorentz transformations, respectively. For later use, we will split the
gauge fixing term E,” =0 into its y trace and y traceless parts:

(')jm)ﬂﬁEﬁm =0
Er=E"—3G"7,), Ef =0 (2.13)

o2

where 7 represents constant Dirac matrices regardless of its indices.
The variations of these gauge fixing terms are then given by

87, Eg") = e¥7,4°D ;K™ + die¥ K*
S(E,") =1e"(7,7"),) DyK"
S(E,'—E”)=e"(D,K'— D, K*) + ¢’ A. (2.14)
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The Fadeev-Popov ghost action is then obtained by replacing the gauge
parameters by the corresponding ghosts and multiplying the variations with their
associated antighosts:

%hos! = %Cmaew(?n ?m)aﬁ Dﬁ C"
+C, e’ (7, Dy C" + 4iCH)
+Ce¥(D,C'— D,C?+ C). (2.15)

The antighost C? formally has 4 components; however, 2 of them, the y-trace part,
drop from the action (2.15) due to the 2-dimensional identity y,,7,y™ =0. In light
cone coordinates (see Appendix B) one can define an antighost which has only the
relevant two components, but for our later calculations we find it casier to keep the
ghost action in this form and remove the redundency later.

3. THE FUNCTIONAL MEASURE IN SUPERSPACE

Having determined the quantum action in the last section, we now turn to the
problem of identifying the proper functional measure in the path integral. Choosing
different functional measures will in general lead to different kinds of anomalies
[1]. In the bosonic string, one fixes the functional measure by requiring that no
world-sheet reparametrization anomaly be present. Here, in the superspace
approach to the spinning string, we should choose a new functional measure that is
invariant under supercoordinate transformations; this guarantees the absence of the
QO-supersymmetry anomalies as well. The method we are going to use is very similar
to the bosonic case; however, we find the surprising result that in d=2 the
invariance under supercoordinate transformations does not fix the functional
measure for a supervector field uniquely. Before discussing this problem, let us first
look at the proper measure for a scalar superfield S. Under supercoordinate trans-
formations a scalar superfield transforms as

8S=[S,K"D,]=—K"D,,S. (3.1)

We assume that the proper integration variable is §= SE*, where E=sdet E .
(Note that in the literature, usage varies and E is often defined as sdet E,,".) The
transformation law of E ,* is defined by

SEMD,,=[EMD,, K"Dy] (3.2)
(cf. 2.12). Therefore
SEM=E NDyK" — K*DyE M — 2E K775, (3.3)
and

SE=E(DyK"—E,*K"DyE ) (— )™ (34)
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Note that the last term in (3.3), coming from the anticommut~ator {D,, Dg},
cancels in (3.4). Hence we obtain the following transformation of S:

08=—K"D, S+ k8D, K"(—)". (3.5)

The Jacobian of this transformation is exp str(865/43), whcreA the supertrace can be
defined by using a complete orthonormal set of superfields ¢’ for S as follows:

stra;—;=z f d’x d*0 §'[ —KMD y, + k(D KM)(—)"] ¢" (3.6)

By partially integrating the second term in (3.6), we obtain, up to a total derivative:
868 5 : .
str—aE=ZJd*x 420 §'(— 1 —2k) KMD ,, ¢ (3.7)

The condition for a unit Jacobian is therefore
k=—1 or  §=S(sdet E M)~ (3.8)
Recall that in the x-space case one has
§=S(dete,”) 2

so the only difference is that the vielbein is replaced by the supervielbein. Since
under BRST transformations the antighost always transforms into the auxiliary
field, its Jacobian trivially equals unity, just as in x space. However, subtle differen-
ces arise when one looks at the functional measure of the vielbein and the ghosts.
The issue is even rather obscure in x space. In principle, the functional measure
should follow from the requirement that the Jacobian of the BRST transformation
be unity. In x space, the measure of the ghost and vielbein has been derived by
letting these fields transform under BRST transformations as contravariant vectors.
This procedure has not yet been justified, although whenever it as been used to
compute anomalies it has given the correct results. Therefore we adopt this
procedure in superspace. In ordinary space-time, the functional measure of the
general coordinate ghost C™ is given by

C"'mz C'"(det eum)—(d+2)/2a' (39)

where d is the dimension of space-time) and the measure of the supersymmetry
ghost C* is the same as that of a scalar. Two questions immediately arise: What is
the equivalent of d in superspace and will the functional measure be the same for
C™ and C* in superspace? To answer these questions, let us follow the rule stated
above and investigate the functional measure of a supercontravariant vector V™.
Under supercoordinate transformations we have

VM = VDKM — KVD VM — 2iVEK 5 5, M. (3.10)
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Let us first assume VM = E“V'M. The Jacobian is

M M
J=expstr%=exp%(—)“. (3.11)

The last term in (3.10) does not contribute to the supertrace so that we drop it in
the following discussion. We then have

VM =VND KM — KD\ VM + kVM(D KV (=)™ (3.12)

In d=2, the number of bosonic and (Majorana) fermionic components are both
equal to two, so in the supertrace (96 VM/aV™)(— )™, the last two terms of (3.12)
always cancel separately, leaving only a non-vanishing contribution from the first
term. In this case the Jacobian would never be unity. The only way out is to take k&
different for ¥ and V*. Denoting these numbers by k,, and k,, respectively, we
obtain (P = V" E*n P* = VrER),

~

s o )
pr =;jdxd0¢[am1< —2K™3,,— 2K*D,
+ 2k, (0, K" — D,K*)] ¢' (3.13)
u
% =Y [ &x &0 ¢'[(D, k")~ 2K73,,— 2K"D,

+2k (0, K" —D,K*)] 4" (3.14)

The factors of 2 are due to the spinor or vector traces. Requiring that
(B5VM[dVMY(—)™ = 06 V™o V™ — 06V*/07* be a total derivative gives

kp—k,=—1 (3.15)

So we see that in d=2, the condition of a unit Jacobian does not fix k,, and
k, uniquely. We assume that the measure for ghosts with flat indices is the same
as that for scalars. Hence C"= C"e Y. Transforming to curved indices we find
C“=Cme * and C*=C*¢ > [12]. Hence,

k,=—-3 and k,=—1. (3.16)

u

NIl

These values satisfy (3.15). We thus obtain the following weights for the vielbein
and ghosts

Erm=e YE™ Ef=e YEM

Tr=e¥em,  Cr=e Mo, 47
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where we have used that E=e? from (2.5). The ghost weights are again those of a
contravariant vector. At this point we see that the should actually have used

Em"=0 and E'-E}’=0 (3.18)

as gauge fixing terms instead of (2.6). Taking this fact into account and expressing
each field in terms of twiddled ones, we obtain the partition function for the spin-
ning string:

Z= j dE M d¥ dC,* dC+ dC dC™ dC* dC e’

where
I=1 j d’x d*0 [D*(e*X') D (¥ %)
1+ C,e ™ (7,77)" Dy(e T
+C e 29,/ Dy(eT™) + 4iC)
+ Ce ¥(D,(e*C")— Dye* )+ e D)] © (3.19)
and
EMm=e ™E™ Ef=e YE»

Y=evx, Cr=Cp C
Crm=e (™, (Cr=e ¥Cr, C=e'C

4. THE CONFORMAL ANOMALY

In this section, we obtain the effective action of the conformal factor yr after
integrating over X', the ghosts, and the antighosts. We notice that after the rescal-
ing

X' se VY
Cmoe ¥Cm, CHoe W0, C-e'C, 4.1
5ma N eZ'”C:‘m“, E# N ezwgu’ Coevl,

all these fields become decoupled from the conformai factor i, so the integrations
just yield a y-independent constant. However, there will be non-trivial Jacobian
factors coming from the change of integration variables (4.1), which have to be
regularized carefully. The finite change of variables in (4.1) can be reached by per-
forming a series of infinitesimal rescalings with scale parameter §s, and finally

595/172/2-8
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integrating over / from =0 to r=1. In the intermediate stage, the y factor appear-
ing in the action (3.19) is of the form

Y,=(1-0)y. (4.2)
The Jacobian of the infinitesimal rescaling of each field is
J=exp Tr(g -y 6t) (4.3)

where ¢ is the product of the number components, statistics, and the weight of the
rescaling as given in (4.1). (By including the statistics in g, we replace a supertrace
by a trace.)

The trace has to be regularized for each field by the quadratic part of its action.
Let us first discuss X". The kinetic operator of X' given by (3.19) is Q, = e¥'D*D,e"".
Since Q," = Q, there exists a complete set of orthonormal superfields

Q,4:=4{1) 4. (44)

The trace in (4.3) can then be regularized by
. s p i A2
Tr qy 6t = Mhin% ;fd x d*0 ¢'qp 5t exp (-F) P,

= lim ¥ j d*x d*0 §,q 5t exp <—5‘Q—;5) é.. (4.5)

M- w i

Since a (super)trace is invariant under a change of basis, we may replace the ¢, in
(4.5) by the superspace generalization of plane waves

eikx+0’1a EeiZ-K‘ (46)
The completeness relation

a’zk

(2 )2 17 Keft7 K _ 52()( x)éZ(H_H’)

can easily be verified. We therefore obtain

d*k
T 2. g2 42
Trqwét—Mhinwjd a0 (q- ¢5I)J(2 2
ellltDaDae'l’r>~ e

- (4.7)

x e~k Oexp —(

To make the integral well defined, we follow the usual procedure of analytically
continuing from Minkowski to Euclidean space-time. Evaluating the square in
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(4.7), we find a form such that a general lemma proven in Appendix D can be
applied. Using this result and noting that = —d for X', we obtain

Jl Trqy dit= —% —ir dtj d’x 0 YDy,
_4 —ij dx &0 (D)D), (4.8)
8n

Let us now turn to the ghost rescalings. As a consequence of splitting the gauge
fixing term E™ =0 into its y trace and y-traceless parts, our ghost action (3.19) is of
triangular form. Therefore, in computations involving closed ghost loops the off-
diagonal terms never contribute. We notice furthermore, that the C* and C ghosts
are nonpropagating, so closed loops involving these ghosts will not contribute to
the anomaly either. Therefore, the only ghost term we have to consider is

Core (5,70 Dyeh T, (4.9)

The problem here is that the kinetic operator e *(7,7"),” Dye’* is not her-
mitian. The solution to this problem is well known [1, 8]. In general, if the ghost
action is of the form COC, where O is not a hermitian operator, we can consider
the hermitian actions COTOC and COO'C, and take O'Q and OO as hermitian
operators to regularize the trace of the ghost and antighosts, respectively. In our
case, we have for the ghost

Cme™ (7,7,)F Dye *(7,7"),7 D, e C"
= —2C"e*D,e D, (5,7, C". (4.10)
The operator
Q1) =D, e~ VD ye(5,,7,)" (4.11)

1s now hermitian and we can therefore use it to regularize the trace of the C™ ghost
in the same way as we did for X"

O.plt) 7(2)

= 1 2y -
Tr gy 5t—Mll£nm Zi:trfdxd 0 ¢.q¥ 6texp< e

>¢, (4.12)

where the “tr” denotes trace in (mn) space, i.e., a summation over m = n.
For the antighost C% we have first to fix the gauge, since as mentioned Section 2,
(4.9) has a local gauge invariance under

5C, =T s (4.13)

where y? is a arbitrary Majorana spinor. We use these two degrees of gauge
freedom to impose two conditions on the antighosts.

C,)=-C2=C,. (4.14)
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Since this is an algebraic gauge, there are no “ghosts for ghosts.” So we obtain the
antighost action from (3.19)

Cme‘ZwDaempDﬂe7zwcn[(?p)lé(’}7m)5a - (’)jp)25(’}7m)5d]
X [(77")“()7”)1;. - (77")&(77”)2;.]
= ~2C,.e 2D, e%Dye (7)) (75)5 (7" C, (4.15)
where we have used the identity
(Tp)ap (77) 16 = —E€xalps+ (Vs)aslPs)ps- (4.16)

The operator
Oilt)=e~2*D, e Dye (7, 757,)" (4.17)

will then be used in the regulator

exp [—————Q’"”(IA)EW(’)]- (4.18)

Working out Q,,.(1) 0”(1) and Q,,,(1) 0#"(z) in (4.12) and (4.18) respectively one
easily sees that they are the same in structure and differ only in e~¥" factors.
Decomposing them into a sum of terms proportional ¢,,” and ¢,," respectively, we
see that the ¢, terms do not contribute. Hence the operator in (4.18) again reduces
to a form suitable for the lemma in Appendix D. Taking into account that ¢ =6 for
the ghost and ¢ =4 for the antighost, we obtain

L: Tr qv 61 =597; —iLl dt [ x 0y,

9 L
—Gfaﬂxd(?(D V(D) (4.19)

for the ghost and
i —2
Tr gy 61=—= | dr | d*x 20 YD,
J Trquoi=—=[ ai[exaoyDy
=% j &x &0 (D*Y)(D, ) (4.20)

for the antighosts.
Summing over the contributions from X, the ghost, and the antighost, we obtain
d—10

8n

_i j &x &0 (D¥)(D, ) (421)

in agreement with the previous results [7, 3].
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5. CONCLUSION

In a previous computation [2] of critical dimensions of spinning strings, a
measure was used which was invariant under BRST-general coordinate transfor-
mations. For supersymmetric systems, it is natural to require that the measure also
be invariant under BRST-local supersymmetry transformations. In principle, this
problem could have been tackled directly in xspace, but due to the many
ambiguities, we instead solved this problem in superspace. We found the curious
result that BRST-supercoordinate invariance did not completely fix the measure of
the supercoordinate ghosts. This may indicate that the quantum action has a
further symmetry such that by also requiring that this symmetry is free from
anomalies, the measure would get completely fixed. We fixed the measure by requir-
ing that ghosts with flat superindices have the same measure as scalars, and further
that the measure of the vielbeins be the same as that of the ghosts with curved
indices [12]. With this measure we then computed the critical dimension of the
spinning string, and found the correct results d=10.

Our results now allow one to determine the supersymmetric measure in x space.
In [2], it was shown that at each point in x space, the sum of the Jacobians for
local supersymmetry variations of the various fields did cancel. This, however, is
not sufficient, as is clear from the fact that one would not obtain the fermionic
terms in the supersymmetric extension of the Liouville action. Rather, one should
regularize the Jacobian for each field, and sum these regularized Jacobians.

APPENDIX A: NOTATION AND CONVENTIONS

Our metric is 11,, = (— +) for a=0, 1. Spinorial indices are raised or lowered by
e5=2¢", &, =1, according to

=P ta=1"ep
Majorana spinors are defined by

Y =2 X T=x%

We use a real representation for the y matrices

/01 (01 10
=1 o) =] gl war=(y )

-1 0 -1 0
('Y())aﬂ=< 0 _1>5 (yl)aﬂ=< 0 +1)
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In curved superspace, we use j to denote these constant y matrices regardless of the
indices on j. The rigid covariant spinor derivatives of flat superspace satisfy

{D,,D,}=2i7.0,, D,=0,+i(77),,0'0,
D*=D*D,
D*D,= —D, D*=2ij7, D0,
(D?)*= —40.

Note that D? is purely antihermitian, whereas D, is hermitian. To see this, note
that from {8,,0"}=6" and [d,,x"]=6; it follows that (9,)'=0, and
(0,) = —0,. We use A=(a,a) to denote tangent superspace indices and
M = (m, ) to denote curved superspace indices.

Vielbeins are defined by
E,=EMD,
where D,, are the covariant derivative of flat superspace
Dy=(0,,D,)
and covariant derivatives of curved superspace are defined by

V,=E,+¢.M

M B_(sub 0 )
A 0 %(VS)azﬂ

is the Lorentz generator. Note that the vielbein E,* is not exactly equal to the
vielbein ¥ ,™ used in the earlier literature of supergravity; rather, ¥ ,* is expanded
on a holonomic basis by E,=V,d,,, which implies £, =V, E\?5 " where
E g™ is the vielbein of flat superspace.

We further define torsion and curvature tensor by

where

[VA’ VB} = TAB(VVC+ RABM‘
Grassmanian integration is defined by
0 = idb" do> =—_2-’ e do, db, =é do* b, ;

where 46 is real, and 6%(6) = i0'6°.

Because the 2-dimensional Lorentz group is SO(1, 1), which has only 1-dimen-
sional representations, it is very convenient to work in a basis of helicity eigenstates.
Then a spinor index y takes two values (+, —), which represent the helicity +;
components, 4(y5x), = +4x,, and a vector index m takes the values (+ +, — — ),
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which represent the helicity + 1 components and are equivalent to light cone com-
ponents: (v™y,,), . = v, .. The anticommutation relations of the flat superspace
derivatives are then simply

(Dy)'=#i0,, {D,,D_}=0
and the Lorentz generator M ,® acts on spinors and vectors as
M, 7 1=%31,, (M, V., 1=xV,,.

For purposes of comparison with other work, ¢. g, [10], which work in
Euclidean space rather than Minkowski space as here, we note that after analytic
continuation, 6+ -0, 0~ -0, i0, , »¢., —id__ —0..

APPENDIX B: D =2 SUPERGRAVITY IN SUPERSPACE

In this appendix we describe aspects of 2-dimensional supergravity. The covariant
derivatives V,=E,+¢,M, E,=E *D,, D, =(d,,D,) are defined in Appen-
dix A. Their transformation is defined by

oV, =V, K] (B.1)
with
K=K"D, + AM (B.2)
which implies
0E,N=—K"DyE N —AM *E;" + E,MD, K" — 2E /K506, . (B3)

The last term comes from the torsion of flat superspace. In particular we have

I

SE,* = —(KMDyE,* +14E, *)+ E "D, K*
SE,** = ~(KMDyE, ** +\AE,**)+ E, D, K** T 2iE, *K*
SE,

(TS

]

+H
+
]
|
>
S
>
S
by
+
H
4l
H
'\,li‘ 2
ty
+
+
H
+
Iry
+
g
>l
<
=
+
+
-+
b2
=
I+
+H
>
+

(B.4)

In flat superspace, E,* =6, and hence we can choose five nonsingular gauges.
Three are algebraic:

(a) Using the Lorentz transformation (A)
E *=F - (B.5)
(b) Using spinor translations (K*)

E ** =0, (B.6)
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Furthermore, there are two gauge choices with spinor derivatives E, of the vector
translation parameters K**(E_ K¥*):

E, "% =0. (B.7)

We now consider the torsion constraints of D=2, N=1 supergravity. The tor-
sions and curvatures were defined in Appendix A:

[V, VB} = TABCVC + R M. (B.8)

They satisfy Bianchi identities that follow from the graded Jacobi identities:

[([Vi4, Vi) Vi) =0. (B9)

We choose the following constraints:
(Voy=2iV,, =T, =42, .7 R,,=0 (B.10)
(V, V. )=RM<T, "=0. (B.11)

We show below that these are conventional. The constraint (B.10) includes a con-
straint on a curvature (R, , =0) as well as on torsions; as is well known [11],
superspace constraints can always be expressed in terms of torsions only, but the
form (B.10)-(B.11) is particularly convenient for expressing all torsions and cur-
vatures in terms of a single irreducible set. This procedure, called “solving the
Bianchi identities,” is most easily carried out by working directly with the com-
mutator algebra of the covariant derivatives, as the Bianchi identities are highly
redundant. Thus we need to determine (V,,V,,], [V,,V::], and
[V, .,V__] We begin with

[V,, V. .]1= ii[Vi,Viz]=0<> Ti,i¢A=R¢, ++ =0 (B.12)
Next, we consider
[V.,V::1= ii[vi’v¢2] = ii[{vi’vi}’vi]
= +i[RM, V¢]= ii($%RV¢ _(VxR) M)
~ 5 RV iV R)M

R, ::=FV;R (B.13)
Finally, we have
[V++’V—7]= _i[V+2aV~A]= —i{V+, [V+’V77]}

i

=—i{V+,—2RV*—i(V;R)M}
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- —i[-%(mR)v_ —%RzM—i(V+VAR)M—é(V_R)VJ

—4[(V.,RV_+(V_R)V,]-(V.V_R+IR) M
T, A= _%(5—AV+R+5+AVAR)’
R,, __=—(V.V_R+1R%. (B.14)

This determines all torsions and curvatures in terms of the single superfield R (note
that R is pure imaginary). When this superfield vanishes, the superspace geometry
is entirely flat. We see that the constraints (B.10)-(B.11) imply the (redundant set
of) purely torsion constraints:

T +2i6,,% T, A=T,, =0 (B.15)
T, ,.,A=T, +:°=0. (B.16)

H+
I+
[

H

In fact, (B.15), which are (2.1)-(2.3) in spinor notation, are sufficient to imply
(B.10)~(B.11), and hence (B.12)~(B.14) and (B.16).

We now show that the constraints (B.10)~(B.11) are conventional, that is, given
an arbitrary covariant denvatlveV (equlvalently, given arbltrary EM and ¢ ),
which define arbitrary unconstramed torsions T and curvatures R, we can always
ﬁnd a derivative V, (equivalently, we can find E, and ¢, expressed in terms of

M and ¢ ,) that satisfy (B.10)-(B.11) and hence (B.12)-(B.14). The full nonlinear
computatlon is messy and unilluminating, so we will only consider V that deviate
infinitesimally from V,, and torsions and curvatures that deviate infinitesimally
from (B.10)}~(B.11):

(VP =+iV,, +36T., ")V, + 3R, . M (B.17)

~ -~

(V.,V_ =0T, _"V,+RM. (B.18)
A straightforward computation shows that

vV,
Vi,

Vo+64, )V, +(6CHM
Vo FildT )V, + 48R, )M+ (V, 04, )V,
+HOCL)V +(RSA, L +(V,5C,)M]  (B.19)

Il

satisfy (B.10)-(B.11) to order § when

0A, , =TFisT, *F
=7 . (B.20)

sC 26T, _F+V,04,.,).

We now solve the constraints (B.10)~(B.11) in terms of unconstrained prepoten-
tials. Previous solutions have been given only in special coordinate systems [4].
Equation (B.10) V, , = Ti(V,)? clearly determines the vector vielbein E,, and
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connection ¢ .. , in terms of the spinor vielbein £, and connection ¢ , . The remain-
ing relation among these quantities follow from (B.11), which splits into two
equations:

R=E+¢-+E7¢+‘¢+¢— (B.21)
{E+’E~}=%(¢+Er—¢—E+)- (B.22)

Equation (B.21) determines the superfield R, but (B.22) is a genuine constraint on
E, and ¢, . We solve for these quantities in terms of unconstrained prepotentials
which we take as the six components of the noncovariant spinor derivatives

v

E,

E *D, +E. ", (B.23)

Note that by definition £, =0. From E, we define noncovariant vector
derivatives:

9

E,, =Fi(E,) (B.24)
and anholonomy coefficients C ;¢
[EA7 EB} = CABCEC' (B.25)

We express E, in terms of E 4 ; since the prepotentials are unconstrained, the most
general £, can always be written as

E,=E +F, ,E-. (B.26)
We substitute (B.26) into (B.22) and find

(1+F, , F JE,,E }+(E,F__)E,
+(E_F, )E +2F E_,-2F,  E _
= (E_+F_ _E,)-% (E,+F, E) (B.27)
From the coefficients of £, , we find
+2F, ++(1+F, ,F__)C, **=0 (B.28)

which implies

L , = _sie i
Fii—+é+“ii(1—\/1—C+,++C‘+; )=F3C, TT+0(C) (B2)

and determines E, in terms of the prepotentials. For the coefficients of £, , after
some algebra, we find

1+F, ,F__ . - .
—————[C, T+EF,, —F, ,(C, *+E,Fz3)] (B.30)

=42
.= 1-F, F_
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We have thus found V, in terms of the prepotentials, and, from V, , = Fi(V, )%
all of V.

In the conformal gauge, E, = E , and ¢, =+2C, *; in particular we see
explicitly that the gauge condition E, =e¢D, implies F., =0 and hence
E,"=0.

“The formalism developed here can be used to simplify some of the calculations in
Sections 2-4. In particular, the gauge conditions (B.5)-(B.7), imposed on the “twid-
dled” variables (cf. (3.18)), are

E YE,7F=0, E YE,**=0, EE,"—E ")=0. (B3l)

This form avoids the problem of separating out pieces of E,” as discussed after
(2.15). From the variations (B.4), using the rescaled variables (3.17) and the confor-
mal gauge (B.31) (with E=¢?), we find the ghost Lagrangian (cf. (3.19)).

511 e —2l//Di(e3wC++)
+Cy e YD, (M) F 2T
4+ Ce V[ —e*C+ D (eMTH)—D (e™T)] (B.32)

with summation over all +. The matter lagrangian remains L. =
2D (e"X') D _(e*X") as in (3.19). We perform the same rescalings as in (4.1). The
discussion for the matter fields proceeds unmodified ((4.2)-(4.8)). However, the
ghost sector simplifies. For the same reasons as discussed below (4.8), we only need
to keep one term from (B.32) (cf. 4.9):

C _*e ™D, MO~ +C,, e WD oM+, (B.33)

The kinetic operator in (B.33) is not hermitian. As explained below (4.9), we over-
come this problem by replacing a lagrangian COC with CO'OC + COO’ C. Then
(B.33) is replaced by

C._"(e ™D, ™) e™D_e ¥)C,, +C (™D _e ) (e WD, e¥) T
=C. e ™D, "D o NC, 1Tt eWD e WD WE (B.34)

The operators in (B.34)

0 e ¥D,e¥D e
e D e¥D, e W 0
and (B.34)
0 eD_e "D, ¥
e¥D, e D _e¥ 0

are hermitian and can be used to regularize the trace just as we did for the scalar
case, without any of the complications described in (4.13)-(4.14), and we obtain
(4.19)—(4.21) directly.
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To compute, for example, the superstress tensor (supercurrent) of various
systems, it is useful to give the complete solution of the vielbein to linear order.
Linearizing (B.29)-(B.30), we find

~

Viin $5(D+E“$¢ +D7E+¢¢)Di
+(iD,D_E FF 3. E. T +2D, E.T) M+ O(SE?)
and
sdet E M =1+ str(0E )+ 0(3E?) (B.35)
=1+%(D,E",‘*—D+E+++)-E++—E_‘ +0(5E?). (B.36)

where dF means all linear terms.

It is also interesting to find how the x-space components lie within the vielbein.
We use a nontrivial modification of standard techniques [9] to find a Wess-
Zumino gauge choice in which the conformal gauge choices in superspace
(E,=e*D,) and in xspace (e,”=pd,”, ¥,=7,x) are compatible. In the usual
procedure, one fixes a Wess-Zumino gauge V| = é,, which is clearly incompatible
with the superspace conformal gauge choice. We therefore begin with a gauge
choice

EJ=e""3,,  El=e,+e "y 2,

0,=0."0,, e,=e,"0,,, e=dete,*

a a

(B.37)

where X| denotes the #-independent projection of X. The powers of e in (B.37)
follow directly from the condition that the component conformal gauge e,” =
e 25, Y= (y.0) ¥, =0, be compatible with the superspace conformal
gauge (B.5)-(B.7):

E,=e'D,=E, =e¥o,, FieY(D,y¥)D,. (B.38)
Then taking (B.37), substituting into the constraints (B.22), and imposing the com-

patibility of (B.38) with the component conformal gauge, a straightforward com-
putation gives

V,=e "0, +iy, ,TM+i0 ("D, + T, +¥.,702)
‘?iezlpi?:ai +%0¢el/4(i‘s+ ¢7~<¢+++)M

Lo+ [%e“"(i5+¢:¢+++ Cay, v )a,
—%em(%eti Inetg¢,,)os

1T s e, Ters +f¢M—| (B.39)
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where the component connection ¢ , , has torsion:

bor=(e e "—e__e, e, T+ YL, (B.40)
S is the x-space auxiliary field of the supergravity multiplet and f, is easily
determined but uninteresting. Note that in component conformal gauge,
$¢,,.=—%,,Ineand E, reduces to

i 1
E,= [e*1/4+é(6+¢++* —0!//;')+29+9‘el/4(i5+l/1,,4l/1+++)j]Di.

(B.AL)

One can also compute the vector derivative and superdeterminant, and find the
superspace parameters of component supersymmetry transformations, but we will
find these from the gauge completion procedure described in Appendix C.

APPENDIX C: GAUGE COMPLETION

In Section 2, we have chosen a particular gauge, namely the conformal gauge
(2.5) for the super vielbein E . In this appendix, we discuss the problem of gauge
completion, i.., we identify the supervielbein in (2.5) with the corresponding fields
in the x-space supergravity multiplet, namely the vielbein ¢,”, the gravitino y *, and
the auxiliary field S.

The usual gauge completion program proceeds as follows [6]: One starts by
identifying the 6° component of the superparameter K, A% and
supervielbein E /M with the x-space parameter and fields:

Km‘ﬂ:ozém: Eam|9=0=eam3
K* g o=¢%6, Ello_o=—¥t,
A% o= A, (C.1)

At higher 6 components, one requires the superspace parameter composition law to
be compatible with that of x space, and the superspace transformation law of the
supervielbein to be compatible with the x-space transformation law. Working this
way, one finds all the 8 components of the superparameter and the supervielbein in
terms of x-space fields.

The gauge completion program with (C.1) is fairly easy to carry out [6]. But, the
result is not compatible with our superspace gauge choice (2.5). For example, one
always gets E *(x, 0 =0) =3 * by gauge completion, but the gauge choice in (2.5) is
E*=e"3 " Therefore, we have to modify (C.1) in such a way as to make the gauge
completion compatible with the (2.5), To do this, we first make a general ansatz for
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K™, K* and A and fix their form by requiring the superspace parameter com-
position law

K" = K,"DyK " — KDy K™ + 8, K, — 8,K," + ak 'K, 77,8, (C.2)
AlzabzKzNDNAlab__KINDNAzab+A2a(-A”b
A M+ 8, A~ 5,4, (C3)

to be compatible with the x-space parameter composition law
(1" =E"0,8\" + 482 y"e — (102) (C4)
€127 = 210,617 + 142 (Vap€1)* — 1(627"€1) ¥, — (1 = 2) (C.5)
ilzab = éznanllab + lza("{lcb +3(€27™ey) wmub + éS(gzyubal )—(1<2) (C6)

where §,K,™ means the variation of the field in the parameter K, and the last
term in (C.2) is due to the anticommutator of D, and D"

{D,,D,}=—ajno,. (C.7)

The constant a is also fixed by the compatibility requirement. At 0 =0, we make
the following identification:

K"(0=0)=¢", K*(0=0)=¢"e* "

ab _ __qab 1/~ . ab (Cg)
AP(0=0)=A"+3(&ys7 V)¢

where e =dete,,”. For K™|, the most general identification is K™| =e“E™, but it
turns out that compatibility in the parameter composition law requires ¢ =0. For
K*| however, it is consistent to keep p # 0 and it turns out that p = — 1 in conformal
gauge. The last term in A*® (§ =0) is very important; it plays the role of a “compen-
sating” Lorentz transformation to keep one in the conformal gauge. (The factor § is
fixed by restricting the vielbein to be of the form (C.9), see below.)

We now look at the spinor vielbein E,". Since we know that E*=e¢Y and
E,” =0 in conformal gauge we make the most general ansatz for E,” at the 0* level
by adding terms that vanish in conformal gauge:

E=0+h(y™), —he ™ *(05™),
ESS, =70, +v(0y-¥) 0,/ +w")." (. y,y"0). (C.9)

!In this appendix we use the conventions of [6], where the x-space formulation is given. These con-
ventions differ from those used elsewhere in this paper, which may be recovered by Wick-rotating and
rescaling the coordinates and derivatives appropriately.
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This choice strongly restricts the 6! terms in K™, and K*. We find
K™= &M+ LeV4(By™e) + L~ 4(B7™)
K*3, = e+ 4(0,,8™) 0" — (&Y )(7,0)"
+§(Eysy - ¥)(ys0)* — G4 (v 0)" (C.10)

and

a=4,  h=—le'"4 v=w=—4

(Sl

Having determined the 60' component of the parameters, it is then
straightforward to evaluate any components of the vielbein to 8' order. At 6* order,
it is tedious and unilluminating to calculate everything explicitly. However, sdet E is
a very useful object, since the supervielbein appears in the measure only through
sdet E. Therefore we determine the fuil # expansion of E. Under supercoordinate
transformations, E transforms as:

SE=K"DyE—(—)"(DyK")E. (C.11)
Using (C.10) we can easily determine E to the 0" level:
E=e~'2_le= 4Gy ). (C.12)

As one sees from (C.11) one only has to work out the 7 piece in K to determine E
to order 6%. We find

K*(67 level) 8, = e'*[ — &(e,0,e,. ) By"c) 6
+ 15(By™e) (% Vo) ¥

— 0w, (e, ) e, (y,€)*] (C.13)
and
E=e™'P— e (B y) + 407

+ 5 ) ) + &) 62 (C.14)

APPENDIX D: A LEMMA FOR REGULATED SUPERTRACES

In this appendix we prove the following lemma:

. d*k . .
L= lim J(z_n)zdzx o~ 7 KpHIMHiZ K

M-

i i
= (sdet g™™)~ = 3, (detg™)™ 8"~ 8rn8™E™) & (D.1)

where H=g""d,0,,+ V*0,,+ X with g, V, and X arbitrary superfields, Z- K =
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ZMKy =x"k,, — 0"y, is real. We first pull the superplane wave ¢’“ ¥ through the
operator H:

e~ % KHe'” K= H+ VMK, +2ig"" K\ Oy — g Ky K y. (D2)

We now rescale K,, > MK,,; because of supersymmetry, and in contrast to the
bosonic case [1, 2], the measure d*kd’y is preserved by this rescaling, and we get

2

d’k H ]
L=Mlim —(Wdzx exp [(A_/[T{—A_ll (VMKM+2gMNKN0M)—gMNKNKM:|. (D.3)

Because no factors of M came out after the rescaling of k, there are no subtleties
involved in taking the M — oo limit, and we can drop the first two terms in (D.3) to
obtain

d*k
- (2n)’

The result (D.1) follows immediately (the simplified form of the superdeterminant
in the last expression in (D.1) follows from the identity g*'—g,,g™g¢" =
36"°€,0,(8°" — 8mn8'8"°)). A final comment: If we had started with our kinetic
operator H in covariant form, H=g""D,D, + ---, though g""#g""
sdet §MY =sdet g*" and we would get the same answer. This follows because the
shift d,,] — D can be compensated by a shift y, — x, + (6k), in (D.4), which is a
unimodular transformation.

Py e~ K = (sdet g") 7 (D4)
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The supersymmetric generalization of the mixed Chern-Simons term FAtr(w AR — %a) NoAw)

in five dimensions is constructed to the lowest two orders in the gravitational coupling constant. It
is shown that the supersymmetrization is only possible when one modifies the fermionic transforma-

tion rules by adding purely bosonic terms.

I. INTRODUCTION

Chern-Simons (CS) terms play an important role in su-
pergravity (for a review see Ref. 1). In particular, in
d =10 dimensions, the coupling of N =1 Maxwell matter
to N =1 supergravity? can be extended to a Yang-Mills
coupled system® by extending the combination B, F,; in
the action to a Yang-Mills CS term

“’R:Etr(BI#va]"%B[#Bva]) ) (1.1

where B, is the Lie-algebra-valued connection and F,,, its
curl. By adding to this Yang-Mills CS term the corre-
sponding gravitational CS term

wfmztr(w[“R wl— %w[“a)@p]) (1.2)
one finds that the one-loop anomalies cancel,* provided
the Yang-Mills gauge group is either SO(32) or EgXEjg.
The action contains (1.1) and (1.2) in the combination

2
H,, where

H,“,P=(a[“Avp] + 30 w,w,, +(l),wp) (1.3)
The presence of (1.2) in H,,, violates local supersym-
metry. It is unknown at present whether further additions
to the action and transformation rules can restore local
supersymmetry. It is known, however, from the zero-
slope limit of the d =10 superstring theory that R,
terms are present. 5 Moreover, one can avoid modlﬁca-
tions in the propagators if the R? terms in the action ap-
pear in the combination
Rypo’—4R,, +R?.

uwpo (1.4)

In d =4 dimensions, this is a total derivative, but in ds£4
dimensions, the terms quadratic in the gravitational fluc-
tuations are still a total derivative.® It is known that R?
terms in the action do not necessarily lead to nonunitari-
ty,” but (1.4) has the attraction that it can be written in
form language,8 namely, as
RPAR“AA -+ Ne™empoge, e, _,- (1.5
Recently, it was shown that the d =3 supersymmetric
gravitational CS term® can be written as'®

¥ 4s8RE N0 + + f 4pcwC A 0P A 0? (1.6)

33

where y 4p and f, pc are the Killing supermetric and the
structure constants of the superconformal algebra in
d =3, which is osp(1/4). In fact, (1.6) is just the action of
d =3 simple conformal supergravity.!® This result has
been extended to the case N >1 (Ref. 11). The results in
(1.5) and (1.6) point to a general scheme in terms of
forms. We note that (1.6) can be written as a supertrace

sttwo AR —joA Ao Ao) , (1.7

where R and w are superalgebra-valued curvatures and
connections. It is tempting to conjecture that in addition
to (1.5) there will be terms in d =10 with more than two
curvatures, but still of the generic form (1.6).

In a recent article,12 compactification of d =10, N =1
supergravity was studied with H,,, in (1.3) in the gravi-
tino transformation law. It was thus assumed that there
were no extra purely bosonic terms in 8y, or if there were
such terms, that they vanished in the Calabi-Yau back-
ground studied in Ref. 12. In general, adding bosonic
terms to the action will require further fermionic terms to
be added for supersymmetry, thus modifying the gravitino
field equations. This in turn implies that the gravitino
transformation rule must be modified since the supersym-
metry algebra closes only modulo fermionic field equa-
tions. The question is whether the modifications of 8¢,
are only fermionic, or perhaps contain also purely bosonic
terms. It is this problem which we will study in this pa-
per.

The d =10 model is qulte complicated, containing a
scalar and spm-— field, in addition to gauge fields. We
therefore look for a simpler system to study the same
question, and turn to simple (N =2) supergravity in d =5
dimensions."*~!> This model contains only gauge fields:
a vielbein e,™, a photon B, and a symplectic Majorana
gravitino

'p ¢ﬂj ‘CS ’
Y m, Y Wi =V ¥m " Ymi€ s (1.8)
Ei"’pi: "gi'ppi ’

where Cs is the d =5 charge-conjugation matrix. In the
action one finds a term F AF AB. We begin by adding to
the term F A B the gravitational CS term of (1.2). We
then get a combination as (1.3), namely,
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FA[FAB+two AR —to Ao Aw)] . (1.9)

The R- and o-dependent terms break the local supersym-
metry of the action, and we will use the order-by-order-
in-x Noether method to find the corrections in the action
and transformation rules needed to restore local super-
symmetry at the first two levels in an expansion in the
gravitational coupling constant «.

We begin by noting that after partial integration (1.9)
can be written as

FAFAB+ttRARAB .

We add all possible 5-forms with the same scale.!® There
are only two such terms, namely,

VAY™DY ARy, R™ AR €mppgs -

(1.10)

(1.11)

It is interesting to see that the combination (1.5) again
arises. One might try to rewrite the sum of the terms in
(1.10) and (1.11) as strR A R A @, which would predict the
coefficients of these terms in (1.10) and (1.11) to be the
d 4pc symbols, i.e., the supersymmetric generalization of
the anomaly coefficients str{A 4,Ap}Ac for the d =5 sim-
ple anti—de Sitter superalgebra su(2,2|1). We will not
pursue this idea further in this paper, but instead turn to
the simple and direct Noether method.
In Sec. II we shall start from the action

Lcs=attRARAB+bYyAy™DyY AR,

+CcR™ ARPIN e°€mppgs (1.12)

and fix the constants a,b,c such that this action is invari-
ant up to lowest order in k. Then we determine all varia-
tions of .Z g to the next order in k. First we show that
on_shell we can cancel these variations by adding
Dy Dy F and RFF terms to .£ 5. Of course this means
that we can cancel 8.7 s also off shell by adding extra
terms to the transformation rules.

The question we will answer is whether one can cancel
8.7 s off shell without extra purely bosonic terms in the
8¢, law. In Sec. III we show that it is not possible to can-
cel 8§.L s off shell by only adding terms to the action
without modifying the transformation rules. In fact, we
show that there are purely bosonic terms 6 ~RFe in the
gravitino transformation law. B _

In Sec. IV we show that the 8.7 s~ Dy Dy Dy € terms
vanish on shell. This implies that there are extra fermion-
ic terms in the transformation law of the gravitino, of the
form 8y, ~DyDye. This vanishing is interesting be-
cause it indicates the existence of a supersymmetric CS
term at the third level of x expansion, but of course, there
are further variations at this order that we have not
analyzed.

II. ON-SHELL INVARIANCE

By on-shell invariance we mean invariance under the on-shell transformation rules. The N =2 supergravity action in
five dimensions is given by [throughout this paper, all antisymmetrization is always with strength one, e.g.,

3B, =7(3,B,—3,B,)]
(1)0+(3
2

e € <
f(e,tﬁ,B):—?R(wo)——z-yb,‘y“’”Dp

die B \Ji
— FK(FFV +F“v)¢;;7[p7’“v7’o]¢ai ’

'pai -

$F, —ixke"'P°"F, F,.B,

(2.1)

where «y is the spin connection obtained by solving the field equation 8.7 /8w,=0, and &(e, ) is the supercovariant spin

connection as usual,

~ K = K: =
wpmn(e:'p):wumn(e) + "2_'/’;47/[m '/’n]i + T'//:rly#'»bm’ .

For later use let us introduce yet another spin connection

£

7> ab
2 Ké'”mme ,

Opmn (€, Y, F)=Dymn(e, ) —

where the supercovariant curvature ?‘,,, is defined by

N I =
F,“, =28I“Bv] + Z’“Il:‘l/"’i .

(2.2)

(2.3)

(2.4)

The action (2.1) is invariant under the following set of local supersymmetric transformation laws:

K _; i
8em#=5—€'y’”¢",, SB‘l:—z '¢pi R

(2.5)

8y =k""Dy( D€+ Fpo (V7Y + 277800 =k "'D, ()€l + iy P pue’ .

In the 8¢“" law, we have absorbed part of the F-dependent term into the definition of the connection w(e,,F) given by

(2.3).
From (2.5) we also derive the transformation laws:
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—i K _; K —i
aw,umn = —K€ ‘7/[npm]ui - Eelyypmm' - _Zepmnabelpabi +0(k?) ’

(2.6)
1
2o Ruwvas? e +0()
where p,,; =D, (w)¥,); is the gravitino curl. This set of transformation laws is not complete, but it suffices to the order
we are working.
Now let us turn to the problem of supersymmetrizing F Atr(o AR — %co Aw Aw). In Sec. I we introduced an ansatz
based on the group manifold approach!'®

Los=ax' R“vabR’m »B P74 b K4/3'7;“i,ymn R,,™ D, €47 4c 23 Rwab Rpacdee upar (2.7)

8F,,=— —;—?‘p,,.,.- +0(kY), 8pui=

where €33%7, denotes the products of €**°” and €4, and where R, and D, all depend on the spin connection o de-
fined in (2.3). The peculiar powers of k come about because in d =5 we have

[e]“_‘O: [B]=%, [¢]=2’ and [K]=_%

The complete variation of this ansatz reads

K718.L 5= = AR 1R poas i JE# P+ 28 (80, IR poas Fpr P

- %(gi{ Ymns>Vab }lﬁﬂ )RpaabR vpmné‘WT'*"ZibK(giya‘ymnpaﬂ' )R vpmnﬁaye“wf

+2bK(80,™) DoV mnPori VE* P77 + %K(Bwv’"")(%"{ Yab>Y mn } ¥ri )R s P77

+§(€"y=¢,,- IR 4y R e + 4 (89, ”)R % %x(tzvfyﬁp,,»)——;-empﬁ“ﬁ e 2.8)

The expression in the large parentheses of the last term is due to the torsion of @, my:

2D, (w)el)= —"21(12,“'7’"%, )—iK€umyab Fap - 2.9
The «%-order variations are

— 3R R pous €D )97 — L&Y s Y s Ry R ™+ (€ g IRy PR p eSS @.10)
It is easy to see that (2.10) vanishes if

b=~£—a=2¢ . (2.11)
The sixth term in (2.8) is
%K(awvmn)('zui{'}'ab"ymn J9ri R g PP T = — %K(Muab)(avi7e¢ﬁ IR poca€aride +bK(80, )Py i IR prap€ ™" . (2.12)

Using (2.11) the first part just supercovariantizes F,, in the second term of (2.8) and the second part just cancels the i
torsion in the last term of (2.8). One is therefore left with
K'738.% 05 =28(80, IR porapFor €777 — AK(E"Y a8ePorri )R ypabF o€ P+ 2aK(EY 40 5 7i )R ypa Fp u €77
—28(80.)R abpoF ab €7+ 40(80,"" )R 13po F o €P° 7+ 1aK(80, ) By 'Y apfpoi €477 . (2.13)
This is still the complete result for the variation of (2.7).
Up to order «, we can neglect the torsion in R, in the fifth term of (2.13); therefore, this term vanishes by the cyclic
identity. Moreover, the sixth term is omitted since it is of order 2. In the fourth term we replace Rappo bY Rpgap- We

will later show that the rest of the k! variations in (2.13) cannot be canceled off shell. Let us first assume this and try to
simplify (2.13) using the on-shell variation law of Sw,,"b. The gravitino field equation is

Y#P"ppm. ER#,‘ =0. (2.14)

From this it easily follows that
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YmnPmni =3V R;=0 and ¥ppa=—7Rai+5¥aly R;)=0. (2.15)
Multiplying (2.14) by ¥*", one gets after a certain amount of y-matrix algebra

eobemn, i +6y19p%), =3ylebRe], _ Zyabe(y . R)=0 . (2.16)
Using this identity, the on-shell variation of ®,,, becomes

80 ymn =2KE'Y [mPnui - (.17
The second term in (2.13) contains three ¥ matrices. We wish to reduce it to a one-y term. We first prove the identity

(?iYabcpq_ri )Rqubﬁgﬁepvpafz (?i?'abcpcﬂ' )R vpabﬁayeyvpor (2.18)
by applying the Schouten identity to the underlined indices. Then using (2.15) this further reduces to a one-y term:

2(€Y aPbri R ypat F o €uvpor - (2.19)
The on-shell variations at order «' can therefore be cast into the following form:

k™13 L cs=2aK(E"Y bPoai )R poab F vr€puvport 2K(E'Y aPori R ypab o€ uvpor+ 8aK(E 0 R pvaFap - (2.20)
It is remarkable, that the first two terms just have the same coefficients. Therefore one can apply the identity

(ginppvi )Rpabgﬁ a-rem:(gi‘}’bp;mi )Rpcmbﬁ vr€uvport (€ iYaPari )R vpabﬁ bu€uvpor 2.21)
which follows from application of the Schouten identity to the underlined indices. This leads to

K138L cs= —2aK(€"Y 4Py IR pbF o 1€vprr+ 8aK(E D )R vt Fap »

where R0 =R .
Clearly the last term can be canceled by adding a term

— 8iak*/¥(dete)F R ™ Ap‘,e",,, e, (2.22)

to the action. For the first one, we have two options. Since it is proportional to the Ricci tensor, which is part of the
graviton field equation, one can in principle cancel it by modifying the vielbein transformation. But it can also be can-
celed by adding a term

8ax’’3( p—#vi,},apkpi ) ﬁafe Aa Hvpor (2.23)

to the action. The variations of (2.22) and (2.23) contain of course also higher-order terms but these we will not consider.
Therefore we conclude that by adding (2.22) and (2.23) to the original action .# g all variations of order k' cancel on
shell. In other words, on shell the CS term is supersymmetric to lowest and one-but-lowest order in «.

III. OFF-SHELL VARIATIONS

In this section we will study the question whether the order-«! off-shell variations of (2.13) can be canceled by only
adding terms to the action. We therefore make a list of the most general terms one can add to the action which might
cancel the order «! off-shell variations of (2.13). The results are given in Table I. There are 11 terms with ppF and RFF
structures, respectively. Let us define

L'=46\L 1 +45,-L 1+ 463 L 34864 L 4+ 465 L s+ 866-L 6+8E7-L 1+4E3-L 3+ 59-L 9+ E10-L 10+HE11-L 11 - (3.1)

Table II lists all the possible structures in the variations, and the coefficients of these terms in 8. s and 8.7, respec-
tively. Requiring 8.7 s and 8.7 to cancel each other gives rise to an overdetermined system of 15 linear equations for
11 variables &,—&;,. This system of equations has no solutions and consequently one cannot cancel the order «' off-shell
variations of 8.7 cg by only adding terms to the action.

The on-shell invariance means that all order «! terms in the variation are proportional to the gravitino field equation
R,;. Since the gravitino action is — %WR,-, one can therefore always modify the gravitino transformation law such that
- %(8,““17“" )R,,; cancel these terms. In this way one achieves off-shell invariance. The terms proportional to the gravi-
tino field equation in the order «’ variations of . g and (2.23) are given by

- aK4/3(€ ’YbuRai R vpabFa'fepvpaf_ EK“A(E ‘YabRui )R vpabFa'rEuvpaf"" EK4/3(6 IYWRW' )RpaabFabepvpa-r

4q —i ~ a i A
+ TK4/3(6‘7/VR[M' )vaabFab + ?K4/3(€‘7/pab7'Ri )Rpaavarepvpar . (3.2)
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In order to cancel these terms, the extra variation of the gravitino must be

. . A ) A a s ~
Sextra’/}ul = '_2aK4/3(7/ab€’)R Vpb[-LF(ITEGVpO’T—aK4/3( Yabel)R vpabFa"reyvpaf_ ?KA/S( Yvrej )RpaabFabepvpar

8a

. ~ 2a . ~
+ 3 K4/3(7’v5‘)RyvabFab - TK“/S(YuYMbE‘)RpaawaEAvpaf . 3.3)

Therefore we conclude that in order to cancel the order «! variations it is not enough to only add terms to the action, but
one is also forced to change the gravitino transformation law. Moreover, these corrections to the gravitino law are purely
bosonic.

IV. THE pppe VARIATIONS

In the previous sections we have shown that the order-x! variations in (2.13) can all be canceled on shell. In this sec-
tion we will consider the last term

1aK(80,°°) PV abPpori E* P . 4.1)
We will show that it vanishes on shell. (4.1) is an order-«? term and it is easy to see that there is no term one can add
to the action whose variation might cancel (4.1). The fact that (4.1) vanishes on shell gives hope that a supersymmetric
extension might still exist at the complete «? level, and it shows that there are also purely fermionic corrections to the
8¢, law in addition to the purely bosonic corrections given by (3.3). Using the on-shell variation of 8w,% given by
(2.17), up to a constant coefficient (4.1) becomes
(ﬁpvi')/abppai )E j'}’apb'rj )€[lvp07 . (4.2)
We first apply (2.16) to p,y€pypor This leads to
(4.2)= =45,V ab ¥ uPrri N €Y aPb1j) = 2P’ ab Ppuvi €Y apbsy)
= S(ﬁpvinpwi )(gj'}’ypb‘rj )— 8(ﬁpvi7’apw1‘ )(gj'}’ap;u'j )— 2(ﬁpvi7ab1pyvi )(gj'}’apb-rj )
= ‘Z(ﬁyvinpvri )(gjpmnj )epb‘rmn _4(ﬁyvi7/bpy-ri )(gj?’bpy‘rj )+ (ﬁpvi?'mnpyvi )(ngapb‘rj )€abrmn - (4.3)

Throughout the steps leading to (4.3) we have used the on-shell conditions (2.15) and (2.16) repeatedly. Using again
(2.15) and (2.16), the first term in (4.3) becomes

% (ppvippai )(Ejpmnj )szn = 4(ppvipvri )(?"ij ) 4.4)
and for the last term in (4.3) we get

- 2(ﬁpviym YnPuvi X gjpmnj )= (ppvi')’mpabi X Ejpmnj )Enp.mb + 4(ﬁpvi7m Yppvnf It gj/:’mnj )

= 8(By Pyri N Elpyrj) 4.5)
since (p_pviYM Pabi )(?ipmnj )Enpvas =0 by the Majorana prop- TABLE 1. Terms whose variation might cancel the k'- order
erty. variations in (2.13).

; Finally we consider the middle term in (4.3). Let us de- L1 =K Bua'a ) F
ine | . Lr=K"Boa'y Papi ) rrEurpar
S= (ﬁpv‘pvp,- NE ’p,‘,,j ), ZLs =K7/3(ﬁ,,,,i‘}’,p,pi ); or€uvpor
_ . L= K7/3(—- i ) €
V=P, i (€ i) s (4.6) 4 PuvY tPoai )Far€pvpor
P;w"}’mpvp . YmpMPJ zs — K7/3(ﬁyvl?’abppvi )Fab
T= (ﬁpv"}’mnpvp] )(EernnPypj) . f6=x7/3(ﬁ‘m ‘vaP,wi )Ea
They form a closed system using Fierz identities =4 7=K:;:(F_’abl?’#ﬁuvi )‘;ab
ZLy=K""(Pua"¥ usPbvi Fap
8S=S+V+T, Lo=k*F R ppo F oo
8V=55—3V+T, 4.7 L 10=k*F R F

N 11 =K‘/3ﬁFyR?“v

T=55+V.
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TABLE II. Possible structures in the variations and the coefficients of §.% s and 8.7
Coefficients of 6.7 s Coefficients of 6.7

Possible variations

K‘”(?'ympp,,)Rw,.pﬁm 4a §1+283— 284+ 86— &
KM PR ypor Py 4a —26,+2834-264+ 465+ &6
K@ g )R oo Fo 4a —26,+ 265+ 26— E6— 47
K‘n(F"}’Mp,ﬂ)Rwﬁ“v 8a —4&,+483+4E,

K& poPori )Rmﬁ,,, 8a 453 46,28,

K (&Y yPari )R v Fur 8a 453 —4E4+ 26
K‘/3(Gi’y‘“’p¢,ﬂ )Rﬁm 4a 283—2£,

K &Y bPpai R poas Forurpor 2a —62—263

K7(E"Y 10abi )R poas Fyr€uvpor —a —&s

K& aPari )R vpas Foy€upor 2a —&3—8&4

K"""'%Pm‘ )Rpﬂlbﬁﬂbeyvpaf —a —-&

K4/3( gt'}’apafl )R vpabﬁbueuvpor 0 - §6

K000 R e Fap 4a 285—86+287—i6s

K €D )R o P —8a 266+285—ik10
K*/(&pui)RE,, —2a —2&;—ik,

Solving these equations one gets V=S and T =6S.
Therefore the middle term in (4.3) is just

— (B0 Elpyry) - 4.8)

Adding (4.4), (4.5), and (4.8) together gives zero, and we
conclude that also the pppe variation (4.1) vanishes on
shell.

V. CONCLUSIONS

The action . s given by (2.7) can be made supersym-
metric up to two orders in k expansion provided (i) the
coefficients a,b,c are fixed by (2.11), (ii) one adds terms
(2.22) and (2.23) to the action .# s, and most importantly,
(iii) one modifies the gravitino transformation law 8, to

include the bosonic corrections given by (3.3). This
strongly suggests that also in d =10 there are such extra
terms in 8¢,. They may still vanish in the Calabi-Yau
background, but we intend to check this.

A further positive indication that a supersymmetric ex-
tension of the mixed Chern-Simons terms exists, is that
the 8.7 cs~pppe term at «* order vanish on shell. It
would be difficult to extend our results to higher orders in
x by the Noether method, but perhaps the geometrical
methods discussed in the Introduction might help. It may
be noted that these methods did give a very simple and
general proof in d =3 dimensions that a supersymmetric
extglﬁon of the gravitational Chern-Simons term did ex-
ist.””
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PART C

Introduction

The subject of quasi one-dimensional systems like polyacetylene and organic charge
transfer salts has received a great deal of interest in recent years both because its experi-
mental advances and its profound connection to the relativistic quantum field theories [27].
In a study of the spectrum for a one-dimensional spinnless Fermi field coupled to a broken
symmetry Bose field, Jackiw and Rebbi [28] first noted the occurence of a localized zero-
energy solution 9y to the Dirac equation when a topological soliton is present. The two
degenerate states, corresponding to whether g is occupied or not, carry charge +1/2 mea-
sured in units of the charge possesed by elementary excitations of the unperturbed medium.
Independently, Su, Schrieffer and Heeger [29] proposed a model ( SSH model ) for the quasi
one—- dimensional conductor polyacetylene (C' H), and noticed the formation of charge den-
sity wave due to the spontaneous symmetry breaking of the system, which leads to a two—fold
degenerate vacuua and soliton formation. Just as in the Jackiw-Rebbi case, there is a local-
ized solution in the presence of a soliton, with energy at the center of the gap. Thus, if one
neglects the electron spin, the existence of the zero-energy state and fermion number +1/2
are commen to both cases, leading to a fortunate convergence between condensed matter

and reletivistic field theories.

However, electrons do posses spin degrees of freedom, therefore in this sense polyacetylene
is not a experimental realization of the Jackiw—Rebbi soliton. In fact, topological excitations

of the SSH model are neutral, spin 1/2 and charged spinless solitons respectively.

Rice and Mele [30] proposed a model for quasi one-dimensional organic charge transfer
salts (NMP)_(Phen);_,TCNQ and Qn(TCNQ), which does seem to realize the Jackiw—
Rebbi soliton. The model they studied is a quarter—filled Hubbard-Peierls model with
infinite on-site electron—electron repulsion (U = o00). In this case electrons can never hop
across each other, the spin ordering is therefore a constant of motion. The Hilbert space is
splitt into 2M sectors corresponding to the different spin orderings (M being the number of
the electrons) , and within a given sector, the electrons form a half-filled band of spinless

fermions, realizing precisely the Jackiw—Rebbi model.

However, U is never infinite in realistic systems, and it is necessary to study the effect
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of perturbations of the order of 1/U, since perturbations at this order break the 2™ fold
degeneracy of the system. In paper 5, the soliton excitations in both the small and large
U limits are studied. It is found that as U varies from zero to infinity, the creation energy
and the profile of the solitons change correspondingly, but the charge and the spin quantum
numbers remain the same. Therefore, in contrast to the original expectation of Rice and

Mele, the large U system resembles more the U = 0 system, but is qualitatively different

from the infinite U system.

Having studied the strictly one~dimensional system at zero temperature, we proceed the
discussion to the case where weak three-dimensional couplings are present. In this case, the
ground state is two—fold degenerate, and naive couting arguments suggest that the solitons
have charge £1/2 and spin +1/4! However, we observe that this only represent the average
values, in fact, the spin of the solitons is not a sharp quantum observable due to the presence

of long ranged spin wave fluctuations.
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We investigate the soliton excitations in the quarter-filled Hubbard-Peierls model in both the large-
and small-U limits. For a strictly one-dimensional system at zero temperature, we find that the solitons
in both limits are in one-to-one correspondence. In the presence of weak three-dimensional coupling, the
large-U system differs qualitatively from the small-U system in that the spin associated with the solitons
ceases to be a sharp quantum observable. We suggest a natural explanation of both the magnetic and
the dielectric response measured in (NPM),(Phen),-,TCNQ [(N-methylphenazinium), (phena-
zine)| —, (tetracyanoquinodimethanide)] and Qn(TCNQ); (quinolinium ditetracyanoquinodimethanide).

PACS numbers: 72.15.Nj, 71.50.+t, 72.80.Le

It is now well established that a topological defect or
kink may carry fractional or even irrational charge mea-
sured in units of the charge possessed by elementary ex-
citations of the unperturbed medium!~% moreover it has
been demonstrated that this fractional charge is a sharp
quantum observable.>~” The original work of Jackiw and
Rebbi! suggested a further special possibility: If there
exists a charge-conjugation symmetry in the presence of
the soliton, then the kink should have two degenerate
charge-conjugate states with fermion number F=+ %.
However, there is not yet an undisputed example of this
situation in a realistic model. Indeed, it has been specu-
lated that no real system could have such properties as
long as charge-conjugation symmetry continues to hold
in the presence of the kink.®

Relevant to this debate is the suggestion® that the ele-
mentary degrees of freedom of a quarter-filled Peierls-
Hubbard system in the infinite-coupling limit (U =o0)
behave like spinless fermions of a half-filled band in the
zero-coupling limit (U =0), and that therefore there are
two charge-conjugate kink states with charge Q =+ te.
Moreover, this large-U Peierls-Hubbard model is be-
lieved to be realized in certain charge-transfer salts'®
such as (NMP),(Phen), -, TCNQ [(~N-methylphenazin-
ium), (phenazine), — ctetracyanoquinodimethanide)] and
Qn(TCNQ), (quinolinium ditetracyanoquinodimethan-
ide).

At U=oo, the ground state is 2M-fold degenerate
where M is the number of electrons, since different spin
configurations all share the same energy. It is therefore

P4

H=—

n

1

§=

I+
|-

N N
Y [to—a(u,,—u,,+1)](C,f‘sc,,+|,s+H.c.)+§ S Wy —up+)?+UY ¢

necessary to study the limit as U— oo in order to make
contact with realistic systems. We have studied the sys-
tem over the range from U =0 to U— oo. In this paper
we summarize the results which will be reported in detail
in a forthcoming publication.'! In the U— oo limit, the
effective Hamiltonian which governs the spin excitations
is that of a spin- ¥ antiferromagnetic spin chain. On the
basis of this effective Hamiltonian, we argue that the
ground state has a spontaneously broken translational
symmetry which consists of a lattice dimerization driven
by a half-filled band of spinless fermions, and a further
much weaker dimerization of the dimers, driven by a
spin-Peierls instability. The ground state thus has the
same symmetry as for U =0. Moreover, we find that the
solitons of this U — oo double dimerized system have the
same quantum numbers as those of the U =0 system
though their profiles and relative creation energies are
quite different. For all U we find three types of solitons:
a spin- 3, neutral, amplitude soliton S¢/2 a spinless
phase soliton with Q== e, S, and a spin-1

Q== te, mixed phase and amplitude soliton, Sl'/zz.

)

The neutral soliton is self-conjugate, but the degenerate
charged-soliton doublets are not. For U large and T#0,
the spin-Peierls instability is very weak, and is likely to
be suppressed in many experimentally relevant cases.
Thus, we conclude this paper by analyzing the model in
the absence of this distortion and its relation to experi-
ments.

The Peierls-Hubbard model is defined by the Hamil-
tonian
c:‘ c , )

+
1€C 1 11
n7 ny 2 T3

n=1 n=1

where c,,*': creates an electron of spin s on the latice site n, and u, denotes the displacement of the nth lattice site. We
treat u, as a classical field. 1, a, K, and U are coupling constants and N is the number of lattice sites.

At U =0, this model is identical to the Su-Schrieffer-Heeger (SSH) model,* except that the electron band is only
quarter-filled, i.e., kp=n/4a, where a is the lattice constant. According to Peierls’s theorem, the ground state is a
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charge-density-wave (CDW) state with period 2kg. In contrast to the half-filled SSH model, both the amplitude and
the phase of the CDW condensate play a dynamical role in this system.'? For instance, we can define the dimensionless

order parameter by

A (n) =R 2altg)uncos(zn/2), Ax(n) =(a/ty)uy,sin(zn/2),

or by
An)e ™ =a,(n) +iA,(n).

(2)

The various kinds of soliton excitations can be studied by consideration of the continuum limit of the U =0 discrete

model (1):

H _ oo [i 4 dx
" Zs:fdx Vs (x)[lozx/faax+A(x)crxexp(zcze(x))]y/s(x)+f ;

where

IVL(X)

W(X) = WR(«’C)

represents the electronic states near kg and — k¥, respec-
tively, and A =a?/Kt, is the dimensionless coupling con-
stant. The last term arises from the umklapp process
and is the source of the nontrivial phase dependence of
the effective potential.'>!3 In the small-A limit, 4 =(1/
27)InAg."3 For uniform order parameter, one finds
A=Ag=22Waexp(—/2/2)), where W is the mo-
mentum cutoff in the continuum model.

There are four degenerate ground states 4,B,C, and
D with A(x) =A¢ and 6(x) =0, n/2, r, and 3r/2, respec-
tively. The various solitons are domain walls between
degenerate phases, and are partially characterized by the
change in the phase A8 of the order parameter. For in-
stance, the phase boundary between 4 and B phases is a
A0 =r/2 soliton, while that between A and C phases is a
A8 =r soliton. We have studied the nature of these soli-
tons both by numerically solving the discrete model to
find the lattice configuration which minimizes the soliton
creation energy and by approximate solution of the con-
tinuum model (see also Zhang, Kivelson, and Gold-
haber'! and Hubbard and Ohfuti and Ono'4). The re-
sults can be summarized as follows. (1) There is one lo-
calized state associated with the n/2 soliton. If the state
is unoccupied, the soliton has charge 0 =+ |e| and spin
0, and is a pure phase soliton with A(x)=A¢ and
0(x) =tan “'exp(x/l), where [=a/A§QA4)"2. Its
creation energy is E,/to=(2A4)"2Ad+0(A3). If the
state is singly occupied, the soliton has spin — + and
charge 0 =— % |e|. It has mixed phase and amplitu<it:4I

Ry...Ry ¢t . +
Fn,...nM Cnyiop " " Cnpgyop

|Q,o0,...,0m)=cC >

ny < ... <ny

+

A% (x)

oy (3)

— AA*(x)cosd6(x) |,

|0),

character with
A(x) = Agtanh(x/&y), 6(x)=tan ~'exp(x/I),

and creation energy E/to=2A0/n+(2A4)"2 Ad+0(A]),
where & =a/Ag is the correlation length. If the state is
doubly occupied, the soliton has creation energy of order
Ao, and hence it is unstable with respect to formation of
a topologically equivalent multiplet of three A8= —x/2
pure phase antisolitons. (2) There is also one localized
state associated with the A@=r soliton. The soliton is
only stable if it is singly occupied, in which case it has
0 =0 and spin . This soliton is a pure amplitude soli-
ton, and is precisely analogous to the neutral soliton in
polyacetylene. An exact solution of the continuum mod-
el for this case gives A(x) =Agtanh(x/&y), 6(x) =0 for
its profile and E;/to=2A¢/n for its creation energy.

Having identified the stable soliton excitations at
U =0, we now proceed to study the limit U — o in (1).
Rice and Mele® noticed that at U =<0, the electrons can
only singly occupy the sites, and two electrons cannot
cross each other. It follows that the spin configuration is
a constant of motion and the Hilbert space splits into 2™
disjoint subspaces, each with a definite spin configu-
ration. Within each subspace, the electrons behave
effectively like noninteracting fermions. In this case, the
band of spinless fermions is half-filled, i.e., kp=nr/2a.
The lattice will dimerize and open a gap in the electronic
spectrum about the Fermi level. The ground state corre-
sponds to a completely filled valence band, which can be
represented equivalently as a state in which all the Wan-
nier states | R,) are occupied,” where |R,) is exponen-
tially localized about the center of the strong bond at po-
sition R,. The ground state of a definite spin ordering
can be represented by

(4)

where ¢, 5, creates the jth electron from the left at site n; with spin o;. F is the determinant of the matrix W;;, where
Wi =(n; | Rm/) is the Wannier function and ¢ is a normalization constant.

At finite U, the effective Hamiltonian mixes the different spin configurations, since two electrons can occupy the
same site as a virtual state. By straightforward degenerate perturbation theory we obtain the matrix elements of the
effective Hamiltonian H.g between the degenerate ground states (5). The resulting effective Hamiltonian can be cast
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into the form of a one-dimensional spin- + Heisenberg chain,

M
Heﬂ=ZJ,-(S,-~S,~+1—1), (5)
i=1
where
_C2 Ry...RyR\,...RiRi4...Ry c? 2 R,...Ry\2
-]i_'— Z fn,-[n,-+,5l+n,,n,~+,Fn|A,.nM Fn,,.,ni—ln,»...nM +-L—/— Z [n,51+n,,n,-+1(Fn,-.HnM ) . (6)
U n <...<ny n<...<ny

In the case where the lattice is perfectly dimerized, J; is actually independent of i. However, as we shall argue later,
the lattice is not simply dimerized, but is doubly dimerized because of the spin-Peierls transition. '°

It is a bit difficult to study this transition in general since J; is rather complicated because the nth spin can only be
loosely associated with the nth strong bond R,. However, the model is quantitatively unchanged if we study it in the
extremely dimerized limit where the nth spin is localized on the nth strong bond. Thus, we consider the limit in which
the hopping matrix elements between the strong bonds ¢, are much larger than that between the weak bonds ¢, so that
we can treat f,, as a perturbation. To the zeroth order in ¢,, electrons can only hop between the sites connected by the
strong bonds. To second order in ¢,, the ground-state spin degeneracy is removed by the hopping between the weak
bonds. The resulting effective Hamiltonian is of the same form as Eq. (5), but with

=202 ' + 1 ™)
U T WU—e)lster) WU—e)is+es) |
where e+ =+ [U+ (U2+16¢2) 2] and 1, is the weak |
bond between the ith and the (i + 1)th strong bond. the spin-Peierls ordering. Moreover, since the charac-
Because of the spin-Peierls transition, the weak bonds teristic energy of spin excitations is so small, even within
also dimerize in the ground state to form alternating a strictly one-dimensional model there is a large range
weak and very weak bonds [Fig. 1(a)]l. The various de- where the temperature 7 is large compared to the
fects can be analyzed in the same way as before; in par- creation energy of the neutral soliton, and hence the
ticular, we identify the three stable solitons as the spin-density 4k g ordering is completely destroyed, yet T
0=1]e|, $=0 soliton [Fig. 1(b)], the Q=— % |e], is still small compared to any of the charged-soliton
=1 soliton [Fig. 1(c)], and the Q =0, S= 7% soliton creation energies. Thus, it is interesting to consider the
[Fig. 1(d)]. excitations of the large-U system in the absence of a 4kg
Therefore, in the extremely dimerized limit, for any U (double-dimerized) distortion. In this case the ground
the soliton quantum numbers are in one-to-one corre- state is twofold degenerate, and there is only one type of
spondence with those of the U=0 limit. There is no soliton. Simple counting arguments suggest that this sol-
phase transition at 7=0 and finite U. However, at large iton has Q== + |e| and spin * %. Thus, one might
U, the spin-Peierls ordering becomes very weak. Even a conclude that there is actually half of an electron associ-

small three-dimensional coupling is enough to destroy ated with the soliton!
This counting argument is correct as far as the expec-
tation value of the spins is concerned. However, al-

though the charge of the soliton is a sharp quantum ob-

(a) # f # ? # f ‘ servable,>® the spin is not. To see this, we define the
spin associated with the soliton as S=Y, f(n)s(n)

®) ¢ s ¢ s 4 4 where.s(n) is Fhe spin de.nsny operator a_nd f(n). is a
= ° =—o sampling function which is 1 over a region of size L
about the soliton, and falls to zero beyond it. The mean

square fluctuation of the spin can be computed easily

() (,io t \ i \ ¢ c,i,, from the spin-spin correlation function G (n,m)=<{s(n)

-s(m)) —(s(n))- (s(m)) according to

@ 4 ¢t ¥ ot v ¢t

oc—o o—0o—0o=0 o=0 oG=B—o==C o <Asz>=-‘,lz—z[f(n)—f(m)]zG(n,m) (8)

FIG. 1. The ground state and various soliton configurations

. — 0 _
in the extremely dimerized limit. Double lines, single lines, In the presence of the soliton, G (n,m) =G"(n—m)

and broken lines represent strong bonds, weak bonds, and very +F(n,m),. Wher? G is the COl'I'clathOI] fung:tlon 9f the
weak bonds, respectively. Electrons localized on the strong perfect spin chain and F(n,m)~G°(n)G°(m) is the
bonds are represented by up and down arrows according to correction due to the presence of the soliton. In the
their spins. spin-Peierls state G%(n) is exponentially localized as a
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result of the gap in the spin-wave spectrum. Thus, for L
sufficiently large, the fluctuations associated with the sol-
iton spin are exponentially small. Without the spin-
Peierls order, however, G%(n)~1/|n|, and hence the
fluctuations are divergent. No particular spin can be as-
sociated with the soliton!

We note that in both (NMP),(Phen); -, TCNQ and
Qn(TCNQ),, the x-ray scattering data show the pres-
ence of a 4kp distortion, but no 2k distortion.'® We
thus conclude that these materials are well described by
a large-U quarter-filled Peierls-Hubbard model with the
spin-Peierls distortion supressed. Experiments by Ep-
stein et al.'% on the magnetic susceptibility have been in-
terpreted in terms of a weakly disordered Heisenberg
spin chain, with a defect concentration proportional to
the deviation in x from x=0.5 (the commensurate
value). This has a natural interpretation in terms of a
concentration of solitons proportional to | x —0.5|. This
interpretation is lent further support by the fact that the
x-ray scattering shows commensurate lock-in for a finite
range of x about x =0.5. Experiments on the dielectric
response and conductivity have been interpreted in terms
of rather mobile, metallic, highly one-dimensional
charged carriers in the presence of disorder.!> The fact
that the charge response of the system is characteristic of
rather mobile electrons and the spin response is charac-
teristic of an insulator is striking. It has a natural ex-
planation in our model in terms of the almost complete
decoupling between charge carriers (solitons) and the
spin degree of freedom which occurs when the spin-
Peierls transition is suppressed. We will discuss this

point in greater detail in a future communication.
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